
Slocan Mining Division
Southeast British Columbia, Canada

BCGS Map Sheet 082K036
Centered at Longitude 116° 57.47' W, Latitude 50° 22.97' N
UTM Easting 503000, UTM Northing 5581200 (NAD83)

PREPARED FOR: Rokmaster Resources Corp.
900 – 850 Hornby Street
Vancouver, B.C. Canada, V6C 3B6

Plateau Minerals Corp.
3000 18th Street
Vernon, B.C., Canada, V1T 4A6

EFFECTIVE DATE: July 20, 2018
REPORT DATE: July 20, 2018
Table of Contents

1 SUMMARY .. 1
2 INTRODUCTION ... 4
3 RELIANCE ON OTHER EXPERTS ... 4
4 PROJECT LOCATION AND DESCRIPTION ... 5
 4.1 Location... 5
 4.2 Description... 5
 4.3 History of Property Acquisition... 9
 4.3.1 Initial Claims Acquisition... 9
 4.3.2 Subsequent Claims Acquisition .. 10
 4.4 Surface Rights .. 11
 4.4.1 West Kootenay-Boundary Land-Use Plan .. 11
 4.5 First Nations Communications ... 11
 4.6 Permitting, Environmental Liabilities and Other Issues ... 11
5 ACCESSIBILITY, CLIMATE, INFRASTRUCTURE, LOCAL RESOURCES AND PHYSIOGRAPHY 14
6 HISTORY .. 15
 6.1 Early History.. 15
 6.2 History of the Project... 17
 6.2.1 North of Duncan Mine ... 17
 6.2.2 South of Duncan Mine .. 19
7 GEOLOGICAL SETTING AND MINERALIZATION .. 22
 7.1 Regional Geology ... 22
 7.2 Structure and Metamorphism ... 23
 7.3 Alteration and Mineralization .. 24
 7.3.1 Summaries of Select Kootenay Arc Mineral Deposits ... 28
 7.4 Local Geology ... 33
 7.5 Local Mineralization ... 38
 7.5.1 North of Duncan Mine ... 38
 7.5.2 South of Duncan Mine .. 40
8 DEPOSIT TYPES ... 43
 8.1 Kootenay Arc Type Zinc-Lead±Silver Deposits (Höy, 1996) .. 43
 8.2 Exploration Model – Kootenay Arc-Type Deposits .. 44
9 EXPLORATION ... 45
 9.1 Core Recovery and Sampling Program.. 45
 9.2 Analytical Results ... 47
10 DRILLING ... 51
 10.1 Historic Drilling on Penninsula North of Duncan Mine .. 51
11 SAMPLE PREPARATION, ANALYSES AND SECURITY ... 59
 11.1 Sample Preparation and Analyses – 1989-1997 Drill Core Samples 59
 11.2 Sample Preparation and Analyses – 2016 and 2017 Character Samples 59
 11.3 Quality Assurance / Quality Control Procedures .. 60
 11.4 Adequacy Of Sample Preparation, Security And Analytical Procedures 60
12 DATA VERIFICATION .. 61
13 MINERAL PROCESSING AND METALLURGICAL TESTING .. 63
14 MINERAL RESOURCE ESTIMATES .. 63
15 ADJACENT PROPERTIES .. 63
 15.1 Introduction ... 63
 15.2 Cominco Evaluation of Duncan Mine Property ... 63
16 OTHER RELEVANT DATA AND INFORMATION .. 65
17 INTERPRETATION AND CONCLUSIONS ... 65
 17.1 Risks and Uncertainties .. 66
18 RECOMMENDATIONS ... 66
19 REFERENCES .. 68
20 SIGNATURE, STAMP AND DATE ... 70
21 CERTIFICATE OF QUALIFIED PERSON ... 71

LIST OF TABLES
Table 4-1: List of Mineral Claims, Duncan Lake Project .. 6
Table 6-1: Selected MINFILE Occurrences, Duncan Lake Area ... 20
Table 7-1: Regional Stratigraphy of the Kootenay Arc (compiled by MacDonald (1973)) 26
Table 7-2: Table of Formations, Duncan Lake Area (Fyles, 1964) .. 35
Table 7-3: Local Geology Legend .. 36
Table 9-1: 2017 Analytical Results .. 48
Table 10-1: Location and Orientation of Diamond Drill Holes – Duncan Lake Project 52
Table 10-2: Selected Mineralized Drill Intersections – Duncan Lake Project... 55
Table 12-1: Descriptions and Results from 2016 Character Sampling of Duncan Lake Project Drill Core............... 62
Table 18-1: Proposed Budget for Pre-Drilling Program.. 67
Table 18-2: Proposed Budget for Phase 1 Diamond Drilling Program... 67

LIST OF FIGURES

Figure 4-1: Location of the Duncan Lake Project.. 7
Figure 4-2: Distribution of Mineral Claims, Duncan Lake Project .. 8
Figure 4-3: Surface Tenures, Duncan Lake Project.. 13
Figure 6-1: Selected MINFILE Occurrences, Duncan Lake Area.. 21
Figure 7-1: Geological map of the southern part of the Kootenay Arc (Fyles, 1970) ... 25
Figure 7-2: Regional Geology and Mineral Deposits, Duncan Lake Area... 27
Figure 7-3: Legend for Figure 7.2 ... 28
Figure 7-4: Vertical section along the main crosscut of the Duncan Mine (Fyles, 1964). ... 31
Figure 7-5: Local Geology, Duncan Lake Project.. 37
Figure 8-1: An integrated deposit model for Kootenay Arc zinc-lead deposits (after Nelson, 1991)......................... 45
Figure 10-1: Drill Hole Locations, Duncan Lake Project .. 57
Figure 10-2: Schematic Cross-section for Section B, Duncan Lake Project... 58
Figure 15-1: Locations of Adjacent Properties ... 64

LIST OF PLATES

Plate 4-1: View looking northwestwards beyond Jubilee Point and along approximate trend of mineralization, Duncan Lake Zinc-Lead Project ... 9
Plate 6-1: Duncan Mine, August 1960 (from Fyles, 1964). ... 20
Plate 7-1: Road cut exposing dark grey argillite of the Lower Index Formation, Jubilee Peninsula, Duncan Lake Project .. 34
Plate 7-2: Outcrop of green chlorite schist of the Upper Index Formation, Jubilee Peninsula, Duncan Lake Project .. 34
Plate 7-3: Tight to isoclinally folded quartz veins in chlorite schists of the Upper Index Formation, Duncan Lake Project .. 38
Plate 7-4: Wispy pyrite-sphalerite mineralization in banded ‘silica rock’ from Hole C97-5A... 41
Plate 7-4: Interval of semi-massive to massive sphalerite-pyrite-galena mineralization from Hole C97-12............. 42
Plate 9-1: State of historic drill core in 2016 prior to recovery .. 46
Plate 9-2: Recovered and reorganized historic core, 2017 .. 46
Plate 10-1: Drill collars with casing for holes C95-9, C95-10, C95-11 and C97-14, Jubilee Peninsula, Duncan Lake Project .. 54
1 SUMMARY

Since 2016 Rokmaster Resources Corp. ("Rokmaster") has acquired mineral title over a 12km strike length of the Duncan Anticline structural trend, making up the bulk of the Duncan Lake Zinc-Lead Project (the "Project"), located approximately 64km north of the town of Kaslo and 150km north of the smelter city of Trail in southeast British Columbia, Canada. The Project consists of 32 contiguous MTO mineral claims (the "claims") that cover 3937.56 hectares. The claims extend northward from slightly south of Glacier Creek and cover most of Jubilee Peninsula, part of Duncan Lake, and a portion of the shore of Duncan Lake. Rokmaster acquired a 100% undivided interest in the claims through a series of purchase agreements and by staking. The Rokmaster claims surround the Duncan Mine property of Teck Resources Limited ("Teck").

The Project covers part of the Kootenay Arc, a belt of tightly folded Precambrian and Paleozoic metamorphosed sedimentary and volcanic rocks that are known to host zinc-lead±silver massive sulphide deposits. The Project includes a number of disseminated to semi-massive to massive sulphide mineral occurrences which are generally stratiform in nature, and are regarded to be either syngenetic or hydrothermal replacement deposits that formed prior to deformation and metamorphism. All of the occurrences are in the crest and limbs of the Duncan Anticline, the principal structure of interest on the Project, within or adjacent to dolomitic limestone and silica-altered limestone of the Badshot Formation.

Rokmaster’s main target area is located 2km north of Teck’s Duncan Mine Prospect. From 1989 to 1997 Cominco carried out 8,333.9m of diamond drilling in 12 holes in the Project main target area and discovered the potential for the east limb of the Duncan Anticline to host larger and higher grade deposits of zinc and lead sulphide mineralization in this location, than previously seen to the south, at Duncan Mine.

Early exploration and mining in the Duncan Lake area was centered near six mineral occurrences that were discovered between 1890 and 1900. The Consolidated Mining and Smelting Company of Canada, Limited ("Cominco") began exploration on its Duncan Mine property in 1957. In 1960, following an extensive geological and diamond-drill program, crosscuts and exploratory drift (totaling 1957 m) were driven 35 feet above lake-level in what is now known as the Duncan Mine, located immediately south of the main target area of the Project, although no production took place. Its’ work outlined a historical underground zinc-lead resource reported as 4.3 million tons (3.9 million tonnes) grading 3.2% Zn and 3.1% Pb (Moore, 1997) and led to extensive prospecting to the north and south, on ground that now comprise parts of the Project, for similar stratiform and stratabound zinc-lead deposits in the same geological setting as the Duncan Mine.

The qualified person has been unable to verify the information listed above because the underground and surface data used to determine the historical resource for Duncan Mine property has not been recovered from Cominco and therefore has not been reviewed. The information on the Duncan Mine is not necessarily indicative of the mineralization on the property that is the subject of the technical report.

In the most recently acquired southern part of the Project, numerous old trenches and small adits mark the locations of the No.1 to No.4 zones along a 5km trend of the Duncan Anticline. Exploration of these four zones dates to at least 1926 when the area was covered by the Amato-Ruby and Glacier groups of
claims where trenching and stripping between elevations of 250 and 750 feet above the lake was carried out on what is now known as the No.3 zone and a short tunnel was driven above the No.1 zone. In 1927, Cominco optioned the property, and in 1928 carried out stripping and 1,108 feet of diamond drilling in 7 holes. In 1951, following a hiatus in activity, claims were located over the prospects by Joe Gallo and associates who subsequently optioned the property to Lardeau Lead & Zinc Mines Ltd. who completed 3 diamond drill holes on the Lakeshore area on the peninsula and 7 drillholes (approximately 460m) on the Glacier Creek showings. In 1952, an adit on the No.1 zone was driven for 650 feet at 015° and 3 short cross cuts were driven to the east across the zone, bringing the total underground work to 1,015 feet.

In September 1952, operations were taken over by Berens River Gold Mines Limited ("Newmont Mines Canada") who completed 24 underground diamond drill holes (1183m) on the No.1 zone and a total of 26 surface drill holes (1799m) collectively on four showings on the Duncan Lake side of Glacier Creek ridge. In 1955, the Bunker Hill Co. of Kellog, Idaho, optioned the property from Joe Gallo and carried out bulldozer stripping and diamond drilling mainly on the peninsula portion to the north. In 1957, Cominco again optioned the property and completed geological mapping, road building and 2,728 feet of diamond drilling in 4 holes on the ridge above Glacier Creek on what is now referred to as the No.2 zone. During 1960 5,236 feet of diamond drilling in 12 holes was carried out along trend on what is now known as the No. 3 zone about 3 km north-northwest of the No.2 zone. Minor prospecting by the property vendors and Rokmaster was carried out in 2016-2018. There is no record of work on the No.1 to No.4 zones by Cominco beyond the early 1960s.

In the northern part of the Project (north of Duncan Mine) drilling by Cominco from 1989-1997 intersected low-grade to high-grade zinc-lead mineralization in the east limb of the Duncan Anticline that is correlated with the No.7 and No.8 zones at Duncan Mine. Four phases of exploration diamond drilling (12 holes, 8333.9m) were completed on the Project by Cominco from 1989 to 1997. Each phase of drilling tested the east limb of the Duncan anticline below the perceived crest of the structure; none reached the west limb, and one hole (C-97-13) was drilled above the crest of the anticline. The holes were drilled from the three sites spaced 300-350m apart along the western shoreline of Jubilee Peninsula to depths of approximately 350m below the level of Duncan Lake. The holes were drilled to the southwest at various dips from three sites covering a total strike length of approximately 650 m. They produced three successive interpretive cross-sections; Section A is about 1650m north of the Duncan Mine adit, Section B is 350 m farther north, and Section C is an additional 300m northward. Some of the drill intersections were correlated with the No. 7 and No. 8 zones in the Duncan Mine.

The work commonly encountered significantly higher grade zinc-lead mineralization (i.e. 7.1% Zn and 4.6% Pb over 8.00 m in hole C89-5; 11.4% Zn and 0.8% Pb over 4.80 m in hole C91-7, and; 6.2% Zn and 6.3% Pb over 7.50 m in hole 97-12) than was typically seen at Duncan Mine and confirmed that altered and mineralized carbonate strata of the Badshot Formation extends from the Duncan Mine property northward for more than 2.3 km and is open to the north and at depth on the Project.

In 1997, Cominco geologists recommended an additional 17,150m of drilling in 20 holes be completed on what is now part of the Project including several wide-spaced step-outs along Jubilee Point to the north of their Section C (Moore, 1997), but no further drilling was completed.
The drilling also determined that the east limb of the Duncan anticline is steeply east-dipping (upright) to overturned and that the little-tested crest area of the Duncan anticline may be more prospective for tectonically thickened and potentially higher grade zones of zinc-lead mineralization.

There are no mineral resource or mineral reserve estimates on the Project. Drilling completed from 1989 to 1997 on claims that now comprise the Project intersected important intervals of zinc-lead mineralization, but to the author’s knowledge the data has not been used to estimate a resource or reserve for the Project.

It is the opinion of the qualified person that the Duncan Lake Zinc-Lead Project is a project of merit because:

- it covers an area of prospective geology, namely altered carbonate rocks of the Badshot Formation that are known regionally in the Kootenay Arc and on the Project, to host important intervals of zinc-lead±silver mineralization.
- the Badshot Formation and its enclosing strata are complexly deformed; the north trending Duncan anticline plunges gently northward; basal argillite of the Index Formation comprise the exposed east limb of the fold on Jubilee Peninsula and preserve underlying mineralized Badshot Formation.
- most of the drilling has tested lower portions of fold limbs where mineralization is interpreted to have been tectonically thinned; drilling near the fold hinges may result in the intersection of thicker zones of mineralization.
- Past drilling on the Project intersected multiple intervals of strong zinc-lead mineralization on three successive sections that is suggestive of the presence of a potentially economic deposit and warrants further work.

It is recommended that, prior to any drilling, a preliminary program consisting of further data acquisition and data compilation be completed. This work should include additional location, recovery, re-organization and selected re-logging of drill core, analysis of selected core intervals for silver and gold, property-wide prospecting and bedrock mapping, and a structural study. The estimated cost for the preliminary program is $70,000. If new information is uncovered it should be used to amend the recommended Phase 1 drilling program outlined below. It is recommended that a Phase 1 diamond drilling program be completed in two locations: one drill station located at the site for hole C-89-5, where up to 4 holes could be wedged off of the old hole in an attempt to provide multiple intersections, and a second drill station located approximately 500m north of Cominco’s Section C drill site where a mother hole totaling 1,000 m would target the Badshot Formation in the east limb and hinge area of the Duncan anticline. A proposed budget for Phase 1 Diamond Drilling is $602,000. Contingent on the success of Phase 1 drilling, a second phase of drilling should be designed to test mineralization further along trend to the north-northwest. Possible drill collar locations for testing the hinge area of the Duncan anticline are along the west side of Jubilee Peninsula toward Jubilee Point and north of previous drill collar locations, and from the west shore of Duncan Lake. Should the follow-up drilling be successful, a systematic diamond drilling program should be undertaken with the intent of producing a resource estimate.

A multi-year area-based exploration permit (MX-5-802) has been issued to Rokmaster which allows the company to drill within the confines of claims 1035005 and 1035041 to further evaluate the potential of the northern extension of the Duncan No.5 to No.8 zones and the west limb of the Duncan Anticline.
2 INTRODUCTION

The author of this Report, or his family members or associates, does not have a business relationship with Rokmaster or any associated company. In addition, the author does not have any financial interest in the outcome of any transaction involving the Project that is the subject of this Report other than payment of professional fees for the work undertaken in preparation of the Report. The discussions, conclusions and recommendations expressed in this Report are those of the author and are independent of Rokmaster.

The purpose of this Report is to provide a comprehensive compilation of all historic exploration and development activities conducted on the Project for which information is available, a basic understanding of regional and local geology and mineralization, and recommendations for future work.

This Report was prepared in accordance with the guidelines provided in NI 43-101, Standards of Disclosure for Mineral Projects (June 24, 2011) for technical reports, Companion Policy 43-101CP, Form 43-101F1, and using industry accepted Canadian Institute of Mining, Metallurgy and Petroleum (CIM) “Best Practices and Reporting Guidelines” (CIM, 2003) for disclosing mineral exploration information, including the updated CIM Definition Standards for Mineral Resources and Mineral Reserves (May 2014).

The author of the report is R.A. (Bob) Lane, P.Geo. of Plateau Minerals Corp., who is a “Qualified Person” as defined by NI 43-101. Lane initially visited the property on May 28, 2016, and made subsequent visits from June 17-19, 2017 and from July 25-26, 2017 during which examination of numerous areas of outcrop and stored diamond drill took place. He is also familiar with the regional geology of the Project area having worked on a nearby early-stage exploration project in 1984.

All units of measurement in this Report are metric unless otherwise stated. Some historical records and figures that are disclosed in the Report are reported in Imperial measurements.

Base metal values are reported in percent (%) or parts per million (ppm).

Currencies are reported in Canadian dollars unless otherwise stated.

3 RELIANCE ON OTHER EXPERTS

The author is required by NI 43-101 Standards of Disclosure for Mineral Projects to include descriptions of Project title and terms of legal or purchase agreements that are presented in this Report. No Title Opinion for the claims that comprise the Duncan Lake Project was provided to the author. Title was confirmed by independently reviewing the digital tenure records, including ownership and mineral claim status information listed on the Province of British Columbia’s “Mineral Titles Online” website (https://www.mtonline.gov.bc.ca) on November 1, 2016.

To the author’s knowledge, Rokmaster has not entered into any joint venture or option agreement with other entities on the Duncan Lake Project. Rokmaster is the 100%-owner of all of the claims that comprise the Project.
4 PROJECT LOCATION AND DESCRIPTION

4.1 LOCATION

The Project is located in the Slocan Mining Division, approximately 64 km north of the town of Kaslo and 150 km north of the smelter city of Trail in southeast British Columbia (Figure 4-1). The Project is centered at Latitude 50° 22.97’ N and Longitude 116° 57.47’ W (or UTM Easting 503000, UTM Northing 5581200 (NAD83) and covers parts of BCGS mapsheet 082K036.

4.2 DESCRIPTION

The Duncan Lake Zinc-Lead Project covers part of the Kootenay Arc, a belt of tightly folded Precambrian and Paleozoic metamorphosed sedimentary and volcanic rocks that are known to host Zn-Pb+/-Ag massive sulphide deposits primarily within limestone of the Lower Cambrian Badshot Formation.

The Project consists of 32 contiguous mineral claims (Table 4-1) that cover an area measuring 3937.56 hectares or 39.4 km² (Figure 4-2). The claims extend northward from Glacier Creek and cover most of Jubilee Peninsula, Jubilee Point, part of Duncan Lake, and a portion of the shore of Duncan Lake including most of Jubilee Peninsula and Jubilee Point (Plate 4-1). These areas represent the potential northerly and southerly extension of the Duncan Mine zinc-lead deposit.

There are a number of mineralized zones and showings on the Project which are generally stratiform in nature, and are regarded to be either syngenetic or hydrothermal replacement deposits that formed prior to deformation and metamorphism (Addie, 1970; Muraro, 1962; Hoy, 1982; Nelson, 1991); all occur in the crest and limbs of the Duncan Anticline, the principal structure of interest on the Project. Four British Columbia Ministry of Energy and Mines MINFILE showings are located on the southern part of the Project: Duncan No.1 (082KSE019), Duncan No.2 (082KSE020), Duncan No.3 (082KSE021) and Duncan No.4 (082KSE022). The northern part of the Project covers what is interpreted to be the drilled northerly extension of the historic Duncan Mine (MINFILE: Duncan No.5 to No.8 (082KSE023)) located on claims owned by Teck. Drilling on this northern part of the Project by Cominco intersected low-grade to high-grade zinc-lead mineralization in the east limb of the Duncan Anticline that are correlated with the No.7 or No.8 zones at Duncan Mine. Significant intersections include 5.21% Zn and 3.10% Pb over an estimated true width of 12.2m in hole C89-5 (Craig, 1989) and 6.20% Zn and 6.3% Pb over an estimated true width of 7.5m (Ransom and Pride, 1998). Further north, an undrilled area may also host zinc-lead mineralization of a similar ilk to that intersected and observed in the 1989-1997 drill core.

The qualified person has been unable to verify the information at the adjacent historic Duncan Mine zinc-lead mineral occurrence; information available for the Duncan Mine is not necessarily indicative of the mineralization on the property that is the subject of the technical report.
Table 4-1: List of Mineral Claims, Duncan Lake Project

<table>
<thead>
<tr>
<th>CLAIM NUMBER</th>
<th>CLAIM NAME</th>
<th>OWNER FMC</th>
<th>TITLE TYPE</th>
<th>GOOD-TO-DATE</th>
<th>AREA (HA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1026900</td>
<td>DUNCAN (NO. 1)</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.29</td>
</tr>
<tr>
<td>1026901</td>
<td>DUNCAN (NO. 2)</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.64</td>
</tr>
<tr>
<td>1026946</td>
<td>DUNCAN NO. 3</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>247.63</td>
</tr>
<tr>
<td>1027043</td>
<td>DUNCAN NE</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.63</td>
</tr>
<tr>
<td>1027045</td>
<td>VINDUNCAN</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.30</td>
</tr>
<tr>
<td>1029865</td>
<td>VINC-SILVER</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>82.42</td>
</tr>
<tr>
<td>1035004</td>
<td>DUNC 1</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>823.90</td>
</tr>
<tr>
<td>1035005</td>
<td>DUNC 2</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.65</td>
</tr>
<tr>
<td>1035024</td>
<td>DUNC 3</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.60</td>
</tr>
<tr>
<td>1035041</td>
<td>DUNC 4</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.60</td>
</tr>
<tr>
<td>1037534</td>
<td>WESTERN SURPRISE</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.63</td>
</tr>
<tr>
<td>1037548</td>
<td>CALICHE</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.26</td>
</tr>
<tr>
<td>1043033</td>
<td>DUNCAN 1</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.61</td>
</tr>
<tr>
<td>1043041</td>
<td>DUNCAN 2</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.61</td>
</tr>
<tr>
<td>1043042</td>
<td>DUNCAN 3</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.61</td>
</tr>
<tr>
<td>1043044</td>
<td>DUNCAN 4</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.61</td>
</tr>
<tr>
<td>1043045</td>
<td>DUNCAN 5</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.61</td>
</tr>
<tr>
<td>1043050</td>
<td>DUNCAN 6</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>20.61</td>
</tr>
<tr>
<td>1043155</td>
<td>DUNCAN SOUTH</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>1,051.61</td>
</tr>
<tr>
<td>1049274</td>
<td>DUNC 7</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.24</td>
</tr>
<tr>
<td>1050994</td>
<td>DUNC 8</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.24</td>
</tr>
<tr>
<td>1051053</td>
<td>GRIZZLY</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.24</td>
</tr>
<tr>
<td>1055161</td>
<td>DUNCAN 9</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.24</td>
</tr>
<tr>
<td>1055204</td>
<td>DUNCAN 10</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.24</td>
</tr>
<tr>
<td>1055222</td>
<td>DUNCAN 11</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.24</td>
</tr>
<tr>
<td>1058678</td>
<td>DUNCAN 12</td>
<td>252914 (100%)</td>
<td>Mineral Claim</td>
<td>2020/APR/09</td>
<td>41.24</td>
</tr>
</tbody>
</table>

Mineral Claims: 32
Total Hectares: 3,937.56

Free Miners Certificate 252914 is registered to Rokmaster Resources Corp.
Plate 4-1: View looking northwestwards beyond Jubilee Point and along approximate trend of mineralization, Duncan Lake Zinc-Lead Project

4.3 HISTORY OF PROPERTY ACQUISITION

Rokmaster acquired a 100% undivided interest in the claims that comprise the Duncan Lake Project through a series of purchase agreements and by staking. As of the effective date of this report, all of the claims are in good-standing until April 9, 2020, except for four claims that have good-to dates as early as September 27, 2018.

4.3.1 Initial Claims Acquisition

Rokmaster acquired nine (9) claims from partners Jack Denny, Robert Denny and Graeme Haines. The individuals originally acquired nine (9) of the claims by staking using the British Columbia “online staking” facility, an internet-based mineral titles administration system that permits acquisition and maintenance of mineral titles by selecting an area of interest on a seamless digital GIS map of British Columbia. The terms of the agreement require Rokmaster to provide the following aggregate consideration to the Sellers at closing in exchange for the 100% ownership of the Property:

- an aggregate of 12,000,000 common shares of the Company (“Common Shares”) to be issued on the date of closing of the Acquisition (paid);
- issue an aggregate of 12,000,000 Series A Special Warrants that have a term of 10 years, with each Series A Special Warrant being automatically exercised into one Common Share upon the Company
receiving a technical report identifying a mineral resource or mineral reserve estimate totaling a minimum of 3 million tonnes of 6% combined lead and zinc equivalent (paid);

- issue an aggregate of 12,000,000 Series B Special Warrants that have a term of 15 years, with each Series B Special Warrant being automatically exercised into one Common Share upon the Company receiving a technical report identifying a mineral resource or mineral reserve estimate totaling a minimum of 6 million tonnes of 6% combined lead and zinc equivalent (paid);

- issue an aggregate of 12,000,000 Series C Special Warrants that have a term of 20 years, with each Series C Special Warrant being automatically exercised into one Common Share once the Property commences commercial production; (paid) and

- a 2.5% net smelter returns royalty on gold, silver, lead and zinc-bearing ores produced from the claims, subject to the buy-back provisions.

All of the aforementioned Special Warrants (the “Special Warrants”) are subject to an accelerated exercise provision that would result in the Special Warrants being exercised automatically into Common Shares if and when there is:

- a consolidation, amalgamation, merger or take-over of the Company with, into or by another body corporate that results in the acquisition of at least 66 2/3 of the issued and outstanding shares of the Company for cash consideration, or if for non-cash consideration, as long as the acquisition price is at least a 25% premium to the volume weighted average trading price of the Company’s shares on the TSXV for the five consecutive trading days ending on the trading day prior to the first public announcement of such consolidation, amalgamation merger or take-over; or

- a transfer of the undertaking or assets of Rokmaster as an entirety or substantially as an entirety to another corporation or entity that is subject to shareholder approval of Rokmaster.

In the case of the Series C Special Warrants, if any of the aforementioned events occurred within 10 years from the date of issue thereof, only an aggregate of 6 million Common Shares would be issued to the holders of the Series C Special Warrants upon exercise thereof.

The Common Shares to be issued with respect to the Acquisition are to subject to a hold period of four months and one day in accordance with applicable securities legislation. **As of May 2, 2018, all common shares issued or to be issued upon the exercise of any Special Warrants have been consolidated on the basis of 5:1.**

4.3.2 Subsequent Claims Acquisition

A total of thirteen (13) claims were purchased 100% from Mr. Craig A. Lynes in two agreements dated January 11, 2017 and September 20, 2017; claims 1043042 and 1043053 are subject to a 2% NSR, and claims 1026900-1026901, 1025041, 1026946, 1027043, 1027045, 1029865, 1035024, 1037534, 1037548 and 1043041 are subject to a 2.5%. NSR.

The acquisition of three (3) additional claims were made in cash transactions whereby claim 1043033 was purchased 100% from Mr. Kelly Funk; claim 1051053 was purchased 100% from co-owners Robert Hamel
and Jack Denny; and claim 1055161 was purchased 100% from Scott Jeffrey. There are no underlying royalties on the three claims.

Five (5) claims (1049303, 1050994, 1055204, 1055222 and 1058678) were staked by, or on behalf of, Rokmaster.

4.4 SURFACE RIGHTS

No surface rights on the Project are held by Rokmaster. However parcels of surface tenure located in the southeast end of the Project (Figure 4-3), two of which (District Lots DL7887 and DL8457) overlap parts of southernmost claim 1043155, are owned by unrelated third parties. None of the surface land parcels are believed to create any significant encumbrance to future exploration of the Project and none cover the trend of mineralization on the Project. The other three parcels, District Lots DL7839 and DL12625, and No Staking Reserve ID 1006242, occur further to the south and do not overlap the Project mineral claims.

Although a complete land title review of surface ownership has not been conducted at this time, the owners are aware that the mineral claims comprising the Project consist of Crown Land for which surface access and rights of use for mineral development can be obtained.

4.4.1 West Kootenay-Boundary Land-Use Plan

The Project is not directly encumbered by any provincial or national parks, or other protected areas. The Project lies fully within an area designated as "Integrated Resource Management Zone" land by the West Kootenay-Boundary Land-Use Plan ("LUP"). LUPs and associated implementation strategies provide direction for managing Crown Land resources and identify ways to achieve community, economic, environmental and social objectives. The West Kootenay-Boundary LUP recognized the importance of mineral resources and mining and, in that regard, provided the following goal-oriented direction regarding the sector in its Kootenay Boundary Land Use Plan Implementation Strategy (June 1997):

"Maintain a healthy investment climate to promote exploration and development of new mining opportunities."

And more specifically, "Opportunities for mineral and coal tenure acquisition, exploration, development and mining, including access development to those tenures, will be maintained on all lands outside of protected areas."

4.5 FIRST NATIONS COMMUNICATIONS

Maintaining good relations with the local First Nations people will continue to be a high priority to ensure success of any future developments within the Project area. Consultation with local First Nations is ongoing and has included site archeological studies.

4.6 PERMITTING, ENVIRONMENTAL LIABILITIES AND OTHER ISSUES

A multi-year exploration permit (MX-5-802) has been issued to Rokmaster that allows it to proceed with limited drilling on claims 1035005 and 1035041. As a condition of the permit, the company has posted a reclamation bond of $10,000 with the British Columbia Minister of Finance.
The owners are not responsible for any earthworks or related impacts from past exploration or any other industrial activity (i.e. logging) on the Project and there are no known environmental liabilities to which the property is subject.

The author is not aware of any other known significant factors or risks related to the Project that may affect access, title or the right or ability to perform work on the property.
Duncan Lake Property
Surface Tenure
Figure 4-3

Projection: UTM Zone 11 Datum: NAD83 Scale: 1:60,000 Date: June 24, 2018

Surface Tenure:
- Private
- Federal
- Crown Provincial
- Crown Agency
- Municipal
- First Nation
- Mixed Ownership
- None
- Unknown

Legend
Mineral Tenure
Duncan Lake Property

Source: Land Title and Survey Authority of BC
5 ACCESSIBILITY, CLIMATE, INFRASTRUCTURE, LOCAL RESOURCES AND PHYSIOGRAPHY

Access to the Project from the city of Kaslo is northward via paved Highway 31, a distance of 64 km to the Duncan Lake / Argenta turnoff, then east and north along the all-season industrial gravel Duncan Lake Forest Service Road (“Duncan FSR”) for 19.5 km to the northern end of the property. A secondary logging/mining exploration road provides access to Jubilee Point. Arterial logging roads or past exploration tracks provide access to the No.1 zone portal, No. 3 zone area, and the No.4 zone.

The Duncan Lake area enjoys pleasant summers with August temperatures averaging 25°C and moderate precipitation. Winter temperatures average -10°C in January with moderate snowfall. Total annual precipitation is on the order of 750 mm with much of this falling during the rainy season from April to June. The Project is not in a heavy snow belt, but up to 1.5 m of accumulation or more can be expected during the winter months. The summer field season typically extends from March or April to late October or November, but access to the Project can be maintained readily throughout the winter months for year-round site work.

The closest infrastructure of any scale is Kaslo (population 1,025). It offers banking, hotel accommodations, restaurants, grocery and fuel services, hardware and heavy equipment rentals. The general area has a strong mining history and a skilled workforce can be found in the numerous small towns, the largest of which is Nelson, located 69 km south of Kaslo. The city of Trail, and its important lead-zinc smelter/refinery, owned and operated by Teck, is located 138 km southwest of Kaslo. The existing paved highways and industrial gravel roads are suitable for hauling goods and materials to and from the Project. Electricity is available locally, and future plans for development of Duncan Dam (located 17 km south of the Project), an impoundment facility that releases water for enhanced power generation at Canadian Kootenay River and U.S. Columbia River plants, are being contemplated by BC Hydro.

The closest major supply centre is the city of Nelson, a total distance of about 153 km to the south. Nelson has a population of more than 10,000. Nelson has an extensive history of supporting mineral exploration and mining development in the Kootenays. It has an available and skilled workforce for exploration and mining, and is the operational base for many companies that provide a range of services, such as: heavy equipment, mining, earth moving and road contractors; and contract diamond drilling. It also serves as a provincial and federal government agency permitting and regulatory hub. Nelson also has an active exploration fraternity whose foundation is the Chamber of Mines of Eastern B.C. which has been serving and promoting the mineral industry in the region since 1925. There is also a strong forestry-based economy and active logging includes areas serviced by the Duncan FSR.

The Project is situated in moderate terrain with elevations ranging from the level of Duncan Lake at 550 m to 1,200 m. Much of the central part of the Project is occupied by the Duncan Lake reservoir; it covers the projection of prospective geology that may host the northerly extensions of previously identified mineralization. Vegetation consists of stands of hemlock, fir, tamarack, cedar and spruce that have locally been harvested.
Outcrop is not uncommon, and roadcuts typically expose bedrock and indicate that bedrock is generally covered by a thin skin of overburden.

The Project’s size, its relatively gentle terrain and its local source of water are sufficient to accommodate mining facilities, and the local water supply would readily support any major resource definition drill programs that may be required, should future exploration programs prove successful.

6 HISTORY

6.1 EARLY HISTORY

The early exploration and mining history of the Duncan Lake area was well documented by Minister of Mines Annual Reports (1900-1961) and by Fyles (1964); his summary, in italics, is provided below. Exploration and mining in the area was centered near six mineral occurrences that were discovered between 1890 and 1900; these and selected other metallic MINFILE occurrences are shown in Figure 6-1 and listed in Table 6-1. This early work was completed before the completion of the Canadian Pacific Railway in 1902 to Lardeau and before road access to the area was developed. Roads connecting Kaslo to the Duncan Lake area were not completed until 1953. Note that, starting in 1927 and again in 1957, exploration and development work on the Project and the Duncan Mine property was by Consolidated Mining and Smelting Company of Canada, Limited (or Cominco), now Teck. No actual mining took place at the Duncan Mine, but the moniker is retained to distinguish it from the Duncan Lake Project which encompasses it.

The Lavina property, on the western summit of Lavina Ridge, was the first to come into prominence. High-grade lead ore containing silver was shipped first in 1901 by rawhiding it down a steep trail into Hamill Creek. Between 1900 and 1907 considerable work was done on the Lavina and on the nearby Argenta property on the north slope of Hamill Creek. A wagon-road on bridges and rock ledges was built through the box canyon of Hamill Creek, and a 10-drill Allis-Chalmers water-driven compressor was installed beside the creek for the Argenta property.

Between 1896 and 1907 lime was produced for flux for the Hall smelter in Nelson from a small quarry on Kootenay Lake half a mile north of Lardeau. In 1908 production of building-stone from marble quarries just north of Marblehead was started by Canadian Granite and Marble Company, Limited, of Edmonton. The stone, known as "Kootenay" marble, was quarried until about 1930 and was used at first for building and decorative purposes and in later years for monuments. The courthouse, city hall, and Bank of Commerce building in Nelson are faced with Kootenay marble.

In 1917 the Lavina property was operated by lessees, and between 1924 and 1927 the property was developed by Ed. Nordman and associates, who shipped a few tons of ore in 1927. In 1919 a shipment of ore was made from the St. Patrick mine, a silver-lead property 1½ miles southwest of the Argenta property. The St. Patrick was owned by Jean Brochier, of Kaslo, who had carried on exploration on the property for a number of years. In the early twenties the Surprise group on Glacier Creek, owned by F. A. Devereaux, of Victoria, attracted attention, and in 1923 and 1924 shipments of sorted silver ore were made by Spokane interests. The ore is tetrahedrite in quartz, and some difficulty was encountered in sorting because of the friable character of the tetrahedrite.
Judging from published accounts, there was very little mining or exploration in the Duncan Lake area in the thirties. Leasers made shipments from the St. Patrick in 1937 and 1938.

The name of Joe Gallo, of Howser, is associated with much of the recent prospecting and promotion of properties in the Duncan Lake area. Mr. Gallo and associates obtained the Surprise, and between 1946 and 1954 produced more than 1,200 tons of silver ore. Near Duncan Lake relatively low-grade occurrences of lead and zinc in limestone were known for many years. Showings on the peninsula east of the lake were located in the 1920’s as the Lakeside and Amato-Ruby groups, and some work was done on them by J. S. Hinks and W. C. P. Heathcote, who owned farm land on Duncan Lake. To the south, in the same belt, showings on Glacier Creek were known from the earliest days of prospecting (see Telfer, 1961). About 1950 Joe Gallo and associates relocated this group of properties as the J.G. group, and since that time several companies have carried on exploration under option from the owners. In 1951 and 1952 Lardeau Lead & Zinc Mines Ltd. drilled on the Lakeshore showings and drove an exploratory adit on the showings on the north slope of Glacier Creek. Exploration was continued by Berens River Mines Limited in 1953 and by The Bunker Hill Company of Kellogg, Idaho, in 1955 and 1956. The Consolidated Mining and Smelting Company of Canada, Limited began exploration on the claims in 1957, and since then has been successful in developing a large tonnage of low-grade lead-zinc ore on the peninsula. In 1960, following an extensive geological and diamond-drill programme, a crosscut and exploratory drift were driven 35 feet above lake-level in what is now known as the Duncan mine. Although this exploration indicates the presence of large mineralized zones, production has not been undertaken and exploration has been discontinued. The property is now owned by the Consolidated company, and it is expected that in due course lead and zinc will be produced. Exploration on the Duncan property led to extensive prospecting, mainly by the Consolidated company, to the north and south for lead-zinc deposits in the same geological setting as those on the Duncan property. Several showings were found to the south between Glacier Creek and the northern edge of the Fry Creek batholith. Most of these showings were rediscoveries of very old prospects. Two properties, the Mag northwest of Lavina Lookout and the Sal on Mount Willet, were drilled in 1960 and 1961, but the results were not encouraging.”

Recorded total production for the small, principally silver-bearing lead-zinc operations was 19 ounces of gold, 61,084 ounces of silver, 3,102 pounds of copper, 505,779 pounds of lead and 232,463 pounds of zinc (Fyles, 1964). More recently, the Mag property, a small-scale producer located northeast of Lavina, operated intermittently from 1970-1984, produced mainly lead and silver with minor amounts of gold, copper and zinc, from a total of 25 tonnes milled (MINFILE, 1995).

The qualified person has been unable to verify the information on the deposits listed above, nor of their past production. The information provided is not necessarily indicative of the mineralization on the property that is the subject of the technical report.

The work completed on the Duncan Mine (Plate 6-1) identified four mineralized zones (Nos. 5 through 8) which were determined from drilling and underground exploration at the mine itself (Fyles, 1964). The mine is at an elevation of about 560 m and workings consist of a 300 m crosscut driven at an azimuth of 070 through the mineralized zones and a drift driven southward for approximately 900 m along the No. 7 zone. Three additional crosscuts, a drift and raise to surface were constructed north of the main crosscut (Fyles, 1964). Results from the surface and underground work by Cominco established a historical
resource of 4.3 million tons (3.9 million tonnes) grading 3.2% Zn and 3.1% Pb in four zones (Moore, 1997).

The qualified person has been unable to verify the information listed above because the underground and surface data used to determine the historical resource for Duncan Mine proper has not been recovered from Cominco and therefore has not been reviewed. The information on the Duncan Mine is not necessarily indicative of the mineralization on the property that is the subject of the technical report.

The crosscut was sealed prior to the completion of the Duncan Dam in 1967 which raised the level of the lake by 27 m resulting in some seasonal flooding of the area.

In 1979, Cominco drilled 4 holes totalling 1,116m to test the northern continuity of the mine’s No.6 through No.8 zones on claims Rosco 5 and Rosco 8 south adjoining Project tenure. Grades encountered were in the 5.5 – 6.5% Zn+Pb range over widths of 2-8m (Santos, 1980).

6.2 HISTORY OF THE PROJECT

6.2.1 North of Duncan Mine

In 1989, following a 10 year hiatus, Cominco returned to the area north of Duncan Mine to evaluate its potential to host a larger deposit and completed two surface diamond drill holes totaling 1,524m (Moore, 1989). The holes targeted the projection of mineralization two km north of the Duncan Mine adit on ground that now comprises part of the Project. Both holes intersected encouraging intervals of stratiform zinc-lead mineralization on the east limb of the Duncan anticline adding important strike length to the zones. Hole C89-5 intersected multiple mineralized zones over 139m, including an interval that averaged 6.42% Zn and 4.00% Pb over a true width of 12.2m (Craig, 1989).

In 1991, Cominco completed two more drill holes totaling 1,069m to test the northern extension of the zone, one of which (C91-7) intersected 11.6% Zn and 0.8% Pb over a true width of 4.2m (Moore, 1997) which provided further proof that mineralization continued northward on the Project.

In 1995, Cominco drilled an additional three holes totaling 1,932m to further test the area north of Duncan Mine on the Project. Two of the holes intersected mineralized Badshot Formation that were thought to correlate with the projection of the No.7 and No.8 zones in the Duncan Mine. An intercept in hole C95-11, corresponding to the No.7 zone, graded 7.27% Zn and 0.52% Pb over a true width of 3.0m (Westcott and Pride, 1995).

In 1997, Cominco completed a total 4,283m of Phase 1 surface diamond drilling in 6 holes on what is now part of the Project. The holes were drilled from previous sites and confirmed earlier findings. Hole C97-12 intersected a well-mineralized zone that averaged 6.2% Zn and 6.3% Pb over a true width of 7.5m (Ransom and Pride, 1998). Two additional phases of drilling (totalling 17,150m in 20 holes), including several wide-spaced step-outs along Jubilee Point to the north of its Section C was recommended (Moore, 1997), but not conducted.

From 1989–1997, on the Project area, Cominco completed a total of twelve (12) drill holes with an aggregate core length of 8,333.9m.
A re-assessment of the explored area (now part of the Project) north of Duncan Mine by Cominco geologists indicated that an additional "900 m of strike length of the structure has the potential to host 5 mmt of 11.5% Zn and 1% Pb in No. 7 Zone and 2 mmt of 7% Zn and 0.3% Pb in the No. 8 Zone. If the known mineralization is projected 2100 m north (in the persistent plunge direction) to Jubilee Point, there is room for 16 mmt at 10% Zn" (Moore, 1997). It was also noted that the 7° northward plunge of the mineralized zone would be amenable to decline access and underground drilling as proven at Duncan Mine.

The potential quantity and grade stated above constitutes a historical estimate and it is conceptual in nature; a qualified person has not done sufficient work to classify the historical estimate as current mineral resources or mineral reserves, and therefore Rokmaster is not treating the historical estimate as current mineral resources or mineral reserves. This represents a target for further exploration and it is uncertain if such further exploration will result in the target being delineated a mineral resource. The qualified person obtained the geological information in respect of the prior work conducted by Cominco and the historical estimate from recorded exploration assessment reports that were submitted to the British Columbia Ministry of Energy and Mines for property assessment credits. While the qualified person has made no attempt to verify the data, the qualified person has no reason to doubt its accuracy or veracity.

In 1997, Cominco completed an economic "sensitivity analysis" on the Project property using a 10 million ton deposit with a mineable grade of 8.5% Zn, 1.0% Pb and 0.2 oz/ton Ag, the assumption of an onsite milling facility and tailings impoundment, and by applying several throughput, concentrate production and metal pricing scenarios (Greenhalgh, 1997). The evaluation determined that a 2000 ton per day operation would be viable having a payback of 5.5 years and mine life of 13.7 years. Further work on Duncan Mine was not conducted by Cominco, perhaps as a result of a change in corporate control of the company by Teck.

The qualified person obtained the above information in respect of Cominco’s exploration program, zinc-lead resource estimate and economic "sensitivity analysis" from Moore (1997) in a private summary report written for Cominco. The qualified person has been unable to verify such information, and the information is not necessarily indicative of the mineralization on the property that is the subject of this technical report.

The qualified person attempted to examine the drill core from 1989 to 1997 but advised that the observed racked or stacked core was quite disheveled. It is possible that as much as three-quarters of the core boxes could be recovered and re-racked and following that, the intact core could be verified. The qualified person collected some character core samples and had MS Analytical Laboratories in Langley, British Columbia, analyze the core. The qualified person advises that the historic drill data for the Project was adequate and that it provides a sound technical framework upon which future exploration programs could be built.

In October, 2016, Jack and Robert Denny commenced recovery of the old drill core and general site clean-up work.

Collars of drill holes completed from 1989 to 1997 were on ground that now in-part comprises the Project tenure. These drill holes are discussed further in Section 10 (Drilling).
6.2.2 South of Duncan Mine

Exploration of the four zones (Duncan No.1 through Duncan No.4) south of Duncan Mine, in the southern part of the Project, dates to at least 1926 when the area was covered by the Amato-Ruby and Glacier groups of claims (Minister of Mines, 1926; Minister of Mines, 1952). The earliest work consisted of the development of trenches and/or open cuts on all of the zones, and a short drift above what later became known as the No.1 zone (Muraro, 1962; Fyles, 1964 and Minister of Mines Annual Reports). In 1928, 1,108 feet of diamond drilling in 7 holes was completed on showings near Glacier Creek by the Consolidated Mining and Smelting Company of Canada, Limited (“Cominco”). In 1951, following a hiatus in activity, claims were located over the prospects by Joe Gallo and associates; who subsequently optioned them to Lardeau Lead & Zinc Mines Ltd. who completed 3 diamond drill holes on the Lakeshore area on the peninsula and 7 drillholes (approximately 460m) on the Glacier Creek showings.

In 1952, an adit was driven 650 feet at 015° and three cross-cuts to the east, for a total of 1,015 feet of underground openings, evaluated the No.1 zone. Later in 1952 operations were taken over by Berens River Gold Mines Limited (“Newmont Mines Canada”) who funded completion of 24 underground diamond drill holes (1183m) on the No.1 zone and a total of 26 surface drill holes (1799m) collectively on the four showings on the Duncan Lake side of Glacier Creek ridge to the north (Minister of Mines, 1952). In 1955 Bunker Hill Co., of Kellog, Idaho optioned the property from Joe Gallo and carried out bulldozer stripping and diamond drilling, mainly on the peninsula portion to the north. In 1957, Cominco again optioned the property and after geological mapping, road building and 2,728 feet of diamond drilling in 4 holes on the ridge above Glacier Creek facing Duncan Lake on what became known as No.2 zone. During 1960 5,236 feet of diamond drilling in 12 holes was carried out along trend on what became known as No.3 zone about 3km north-northwest of No.2 zone. There is no record of further work on the No.1 to No.4 zones by Cominco beyond the early 1960’s. Minor prospecting by the Project vendors and Rokmaster was carried out from 2016 to date.
Table 6-1: Selected MINFILE Occurrences, Duncan Lake Area

<table>
<thead>
<tr>
<th>MINFILE Name</th>
<th>MINFILE Number</th>
<th>Status</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG</td>
<td>082KSE013</td>
<td>Past Producer (1970, 1979-81, 1984)</td>
<td>1 oz Au; 838 oz Ag; 24,709 lbs Pb; 196 lbs Zn; 40 lbs Cu; 27 tons shipped</td>
</tr>
<tr>
<td>LAVINA</td>
<td>082KSE014</td>
<td>Past Producer (1901-02, 1918 & 1927)</td>
<td>8,678 oz Ag; 269,508 lbs Pb; 232 tons shipped</td>
</tr>
<tr>
<td>SURPRISE</td>
<td>082KSE018</td>
<td>Past Producer (1923-26, 1946-54)</td>
<td>18 oz Au; 41,561 oz Ag; 2,138 lbs Cu; 20,852 lbs Pb; 21,534 lbs Zn; 1,318 tons shipped</td>
</tr>
<tr>
<td>DUNCAN (1)</td>
<td>082KSE019</td>
<td>Prospect</td>
<td>-</td>
</tr>
<tr>
<td>DUNCAN (2)</td>
<td>082KSE020</td>
<td>Prospect</td>
<td>-</td>
</tr>
<tr>
<td>DUNCAN (3)</td>
<td>082KSE021</td>
<td>Prospect</td>
<td>-</td>
</tr>
<tr>
<td>DUNCAN (4)</td>
<td>082KSE022</td>
<td>Prospect</td>
<td>-</td>
</tr>
<tr>
<td>DUNCAN MINE (5-8)</td>
<td>082KSE023</td>
<td>Developed Prospect</td>
<td>-</td>
</tr>
<tr>
<td>ARGENTA</td>
<td>082KSE024</td>
<td>Past Producer (1900)</td>
<td>4,017 oz Ag; 7,972 lbs Pb; 45 tons shipped</td>
</tr>
<tr>
<td>ST. PATRICK</td>
<td>082KSE026</td>
<td>Past Producer (1919, 1927 & 1937-38)</td>
<td>1,227 oz Ag; 30,792 lbs Pb; 14,789 lbs Zn; 42 tons shipped</td>
</tr>
</tbody>
</table>

Plate 6-1: Duncan Mine, August 1960 (from Fyles, 1964)
Legend

MINFILE
- Developed Prospect
- Prospect
- Showing

TENURE
- Duncan Lake Property

Figure 6-1

Projection: UTM Zone 11 Datum: NAD83 Scale: 1:100,000 Date: Aug 16, 2018
7 GEOLOGICAL SETTING AND MINERALIZATION

The main source of information for the geological setting and mineralization presented in Section 7 is Fyles (1964). Additional sources of information for local geology descriptions and mineral deposit descriptions include Fyles and Eastwood (1962), Fyles and Hewlett (1959), Fyles (1970), Nelson (1991), Logan and Colpron (2006), and numerous mineral exploration assessment reports that are referenced individually where appropriate.

7.1 REGIONAL GEOLOGY

The Duncan Lake area is situated within the pericratonic Kootenay Terrane of Ancestral North America that forms part of the Omineca tectonic belt in southeastern British Columbia. The Omineca belt consists of variably deformed and metamorphosed rocks of continental affinity that occur west of deformed Paleozoic continental margin sedimentary rocks and Neoproterozoic rocks of the Purcell Anticlinorium, and east of Mesozoic arc and back-arc sequences of the Intermontane belt.

The Kootenay Terrane (or Kootenay Arc) includes a 10-50 km wide, arc-shaped belt of stratigraphy that has been well-correlated over a distance of 400 km, from 50 km south of the British Columbia – Washington State border near Metaline Falls, to 100 km north of Revelstoke (Figure 7-1).

In British Columbia, the Kootenay Arc consists of a succession of predominantly lower to mid-Paleozoic miogeoclinal sedimentary and volcanic rocks deposited on the western passive margin of ancestral North America. The succession has been assigned to five major lithologic units: the Neoproterozoic Horsethief Group, the Eocambrian Hamill Group, the Lower Cambrian Badshot and Mohican Formations, and the Paleozoic Lardeau Group (Fyles and Eastwood, 1962). A generalized stratigraphic column listing key geological units is shown in Table 7-1.

The Duncan Lake area in which the project occurs, covers approximately 500 square kilometres that extends from approximately Mount Willet in the south to Howser Knob in the north, and central to the area is the Duncan anticline. The units that outcrop within the area are summarized below.

The oldest rocks exposed are white, grey and brown micaceous quartzite and mica schists of the Marsh Adams Formation (uppermost Hamill Group) that form the core of Duncan anticline. They are overlain by an interbedded sequence of limestones and schists of the Mohican Formation, rocks that are quite distinct from the Hamill Group. Grey and white crystalline limestone and dolomite of the Badshot Formation overlies the Mohican Formation and like it, is repeated on the limbs of the Duncan anticline (Figures 7-2 and 7-3).

On the Duncan anticline itself much of the Badshot Formation is dolomite. On the Duncan Peninsula, detailed work by Muraro (1962) subdivided the Badshot Formation into an upper dolomite with two members, and a lower dolomite with three members including a thin basal crystalline limestone. The differences may be due to both structural complexities and effects of dolomitization and silicification. The Badshot Formation hosts the zinc-lead mineralization on the Project, at the Duncan Mine property, and at the Bluebell lead-silver deposit. Its correlative unit to the south, the Reeves Limestone, hosts a number of zinc-lead±silver deposits including Jackpot, HB, Jersey-Emerald, Reeves MacDonald and Pend Oreille.
The Badshot Formation is overlain by the Lower Paleozoic Lardeau Group. In its type area (the Ferguson area north of Duncan Lake), the Lardeau Group consists of six formations (in ascending order): Index Formation, Triune Formation, Ajax Formation, Sharon Creek Formation, and Jowett Formation and Broadview Formation (Fyles and Eastwood, 1962). Fine-grained dark grey and green schist of the Index Formation is a thick succession that forms the base of the Lardeau Group (Fyles, 1964). Rocks of the Lower Index Formation consist of variably carbonaceous phyllite to graphitic schist with local pyrite, while rocks of the Upper Index Formation consist of fine-grained grey-green quartz-muscovite-chlorite phyllite and feldspar-chlorite schist that are thought to be primarily of volcanic origin (Fyles, 1964). Trace element and rare-earth element geochemical analysis of the chloritic units has suggested that they are alkaline volcanic tuffs (Colpron and Logan, 2006).

The Triune, Ajax and Sharon Creek Formations consist of dark grey argillite and argillaceous quartzite, grey blocky quartzite, and dark grey to black argillite of the Sharon Creek Formation, respectively. The formations have been mapped together (Fyles, 1964) and occur north of Duncan Lake on Howser Knob and Howser Ridge where they occupy the central part of the Howser syncline. The central core of the Howser syncline is occupied by green and grey quartzite, greywacke and fine-grained schist of the Broadview Formation.

West of Duncan Lake, fine-grained green chlorite schist of the Jowett Formation overlie rocks of the Index Formation. In the Ferguson area, north of Duncan Lake, the base of the Jowett Formation consists of basaltic breccia flows that are conformable with the underlying Sharon Creek Formation, and volcanic breccias of the upper Jowett Formation are gradational into basal phyllitic rocks of the overlying Broadview Formation (Fyles and Eastwood, 1962).

Intrusive Rocks

Several large Middle Jurassic batholiths occur peripheral to the Duncan Lake area. They include the Kuskanax Batholith, centred about 50 km west of Duncan Lake, that extends from north of Slocan Lake, the Nelson Batholith, that extends south from Sandon to Salmo, and the Fry Creek batholith, centered east of the north end of Kootenay Lake opposite Kaslo (see Figure 7-1). The plutonic bodies consist of granodiorite, diorite porphyry, quartz monzonite and quartz monzonite breccia (Fyles, 1970).

The only intrusive rocks in the Duncan Lake area are sills of felsite, which are common in the southwestern part of the area, dykes of lamprophyre, and small sill-like bodies of amphibolite (Fyles, 1964).

7.2 Structure and Metamorphism

Rocks of the Kootenay Arc have a complex structural history involving at least three phases of folding. Later major regional low angle thrust faults and multiple smaller faults span an age interval from mid-Mesozoic to Eocene (Fyles and Hewlett, 1959). The three phases of deformation along the length of the Kootenay arc are compared by MacDonald (1973) in his detailed structural assessment of the Salmo area and is consistent with that described by Fyles (1964) in the Duncan Lake area.

Phase I folds are tight to isoclinal, and upright to overturned to the east with 7° northerly plunges. Limbs and axial planes of these folds are curved as a result of later Phase II deformation. The principal Phase I
folds in the Duncan Lake area are the Howser syncline, the Duncan anticline, the St. Patrick syncline and the Meadow Creek anticline. Strongly sheared and pinched limbs of Phase I folds are common. Phase II folds are generally more open, plunge northerly from 10° – 25°, and strike parallel to Phase I folds. Phase III folds consist of asymmetric minor and chevron folds.

Regional metamorphism in the Duncan Lake area is lower greenschist facies and is thought to have been synchronous with the earliest phase of deformation. Metamorphic grade increases to garnet and higher grades southward at Kootenay Lake. Contact metamorphism is locally associated with the intrusion of the Middle Jurassic igneous rocks and postdates all phases of folding (Fyles and Hewlett, 1959; Höy, 1977).

7.3 ALTERATION AND MINERALIZATION

In the Kootenay Arc, the Badshot Formation and its equivalents, such as the Reeves Formation near Salmo, host a number of zinc-lead±silver deposits (see Figure 7-1). Most of the largest deposits, including Pend Oreille, Reeves MacDonald, HB, Jersey and Duncan, show mostly syngenetic attributes, and are categorized by most researchers as Kootenay Arc type deposits (or locally as Duncan type or Salmo type), while some of the small, silver-rich deposits are of epigenetic origin and are regarded to be Carbonate-hosted Replacement or Manto type deposits (McClelland and Whitebread, 1965; Fyles and Hewlett, 1959; Fyles and Eastwood, 1962; Fyles, 1964; Fyles, 1970, Nelson, 1991; Höy, 1996; Cook, 2016).

In the Duncan Lake area, 15 to 20 scattered mineral occurrences are known to occur within Badshot Formation carbonates on the Duncan anticline (Fyles, 1964). The main mineralized zones on the east limb of the Duncan anticline include: Duncan Mine on Jubilee Peninsula, Lavina near Lavina Lookout, and Sal on Mount Willet. The principal mineralized zones on the west limb of the Duncan anticline include: Mag and Argenta west of Lavina Lookout (see Figure 6-1).
Figure 7-1: Geological map of the southern part of the Kootenay Arc (Fyles, 1970)
Table 7-1: Regional Stratigraphy of the Kootenay Arc (compiled by MacDonald (1973)).

<table>
<thead>
<tr>
<th>Period</th>
<th>Metaline District</th>
<th>Salmo District</th>
<th>Lameau District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurassic</td>
<td>Rossland Group</td>
<td>Rossland Group</td>
<td>Slocan Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kalo Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Milford Group</td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>Mt. Roberts Fm.</td>
<td>Mt. Roberts Fm.</td>
<td></td>
</tr>
<tr>
<td>Mississippian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silurian</td>
<td></td>
<td></td>
<td>BROADVIEW FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JOWETT FORMATION</td>
</tr>
<tr>
<td>Devonian</td>
<td>unnamed formation</td>
<td></td>
<td>SHARON CREEK Fm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJAX FORMATION</td>
</tr>
<tr>
<td>Ordovician</td>
<td></td>
<td></td>
<td>LARDEAU GROUP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TRIUNE FORMATION</td>
</tr>
<tr>
<td>Lower Ordovician</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Cambrian</td>
<td></td>
<td></td>
<td>INDEX FORMATION</td>
</tr>
<tr>
<td>Middle Cambrian</td>
<td>MELIN FORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Cambrian</td>
<td>MAITLEN PHYLLITE Fm.</td>
<td></td>
<td>BROADHORN FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MONICAN FORMATION</td>
</tr>
<tr>
<td></td>
<td>GYPSY QUARTZITE Fm.</td>
<td></td>
<td>RENO FORMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HAMILL GROUP</td>
</tr>
<tr>
<td></td>
<td>MONK FORMATION</td>
<td>QUARTZITE RANGE Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>THREE SISTERS Fm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEGA VOLCANICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHERROCK CONGLOMELATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windermere</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Horizons containing Pb-Zn mineralization
7.3.1 Summaries of Select Kootenay Arc Mineral Deposits

Salmo Area

The Jersey-Emerald zinc-lead property is located 10 km southeast of the community of Salmo. The HB lead-zinc property is centered 7 km southeast of Salmo and the Reeves MacDonald lead-zinc property is located 20 km south of Salmo. Mineralization on each of the properties is associated with the limbs or apex of a complex major fold structure referred to regionally as the Salmo River anticline, or the adjacent Reeves syncline. The three properties are also within an area intruded by stocks of the Nelson Batholith.

Jersey-Emerald

The past-producing Jersey-Emerald property consists of two deposits. The Jersey lead-zinc deposit occurs in dolomite near the base of the Reeves limestone member. Five ore bands, ranging in thickness from 0.3 to 9.0 m were mined. Mineralization consists of fine-grained sphalerite and galena with pyrite, pyrrhotite and minor arsenopyrite. Cadmium is associated with the sphalerite and silver with galena. Iron content of the sphalerite is about 6%. The Emerald lead-zinc deposit is located immediately to the north of the Jersey lead-zinc deposit, along the same host structure. Mineralization in the Emerald lead-zinc deposit consists of banded limestone and dolomite of the Reeves Member hosting stratabound lead and zinc bands. The average grade of the 7.68 million tonnes milled at Jersey-Emerald was 3.49% zinc, 1.65% lead and 3.08 g/t silver (Nelson, 1991). In addition, a total of 1,597,802 tons of tungsten ore grading 0.76% WO₃ were mined and milled (Giroux and Grunenberg, 2010). Mining ceased in 1970.
HB

The past-producing HB mine was initially staked in 1907, put into limited production in 1912, and acquired by Cominco in 1927. Exploration by Cominco in 1949-1950 outlined three rod-shaped, gently south plunging ore zones 900 m in strike length. The ore is located within dolomitized limestone of the Reeves Formation.

The largest and most easterly ore zone had a maximum height of about 140 m and a maximum width of 30 m. Within these zones are steeply dipping discontinuous ore stringers. The mineralogy of the ore is relatively simple with pyrite, sphalerite and galena in order of abundance and minor pyrrhotite found locally. Ore zones are enveloped by a broad zone of dolomitization which is bordered along its contact with the limestone by a narrow zone in which limestone is replaced by fine-grained silica. Talc and tremolite alteration, thought to be pre-ore, is concentrated near the silica-rich zone resulting from the silicification of dolomite.

In 1955 the HB Mine was put back into production at 1,000 ton/day. Ten years later, the adjacent Garnet lead-zinc mine commenced. From 1912-1978 the HB and Garnet mines produced a total of 6.45 million tonnes of ore at an average grade of 4.1% zinc, 0.77% lead and 4.8 g/t silver (Nelson, 1991).

Reeves MacDonald

The past-producing Reeves MacDonald sulphide mine and adjoining Annex property produced a total of 5.8 million tonnes of zinc-lead sulphide ore from 1949 to 1977 with average head grades of 3.42% zinc, 0.98% lead and 3.4 g/t silver (Hoy, 1980). Zinc-lead mineralization on the property occurs in a series of deposits hosted within the Reeves Limestone over a strike length of 4 km, referred to as the Reeves-Redbird corridor. The Reeves ore zone was tightly folded together with the enclosing limestone during Jurassic tectonic activity (Nelson, 1991). Sulphide mineralization ranges from massive beds that are sometimes breccias to delicate laminae that follow bedding in the host stratigraphy. The laminae are deformed into mesoscopic folds that mimic the regional-scale structures (Nelson, 1991). Ore zones are concentrated near the hinge area of the Reeves syncline, a steeply plunging, extremely attenuated syncline with relatively competent dolomite at its core (MacDonald, 1973).

Mineralized zones are elongate lenses measuring up to 1,000 m down plunge, 100-200 m along strike and 5-25 m in width. Historic mining records indicate excellent geometric continuity and grade. There are four known zones of mineralization, all striking easterly, dipping south at 50° to 60° and plunging to the west at 45° to 60°. The zones are offset by east-dipping normal faults which bring the faulted extensions closer to the surface and produce a series of distinct zinc deposits. The sulphide deposits consist of laminations and lenses of pyrite, sphalerite and galena and are structurally conformable and stratabound. They often contain a high grade central core which feathers out along strike.

Riondel Area

Bluebell

The past-producing Bluebell Mine is located at Riondel on the east side of Kootenay Lake. It is a replacement lead-zinc-silver deposit in the Lower Cambrian Badshot Formation, and is the only important producer in the Riondel area. It milled 4.82 million tonnes of lead-zinc-silver ore grading 6.3%
Zn, 5.2% Pb and 45 g/t Ag during the periods 1895-1927 and from 1952 until its closure in 1971 (Höy, 1980). It is briefly described below and serves as an example of a contrasting deposit type to the typically concordant zinc-lead deposits found throughout most of the Kootenay Arc.

The Bluebell ore deposit consists of three main zones spaced approximately 500 metres apart along the strike of the Badshot marble: the Comfort zone at the north end of Riondel Peninsula, the Bluebell zone in the centre, and the Kootenay Chief at the south end (Höy, 1980). The zones are localized along steep cross-fractures that trend west-northwest and dip 80-90° to the north (Irvine, 1957). Within the zones are tabular ore shoots that are transverse to the bedding and plunge westward following the intersection of the fractures with the marble.

The alignment of ore shoots with steep tensional cross-fractures, the crosscutting nature of the ore shoots, and the occurrence of sulphides in both Badshot marble and structurally overlying marble in the Mohican Formation argue strongly that the deposits formed as fracture-controlled replacement bodies. The common occurrence of coarsely crystalline sulphide minerals, associated with well-formed quartz crystal clusters in numerous vugs and cavities in the siliceous zones is evidence of late deposition, post-regional metamorphism and deformation (Höy, 1980).

Duncan Lake Area

Most of the deposits in the Duncan Lake area are of the Duncan type and occur in the Badshot Formation on the Duncan anticline. Some 15 to 20 mineralized zones of this type are known within the map area. Of the larger occurrences, Duncan Mine, Lavina, and Sal (just south of the Duncan Lake area) are on the eastern limb of the Duncan anticline and Mag and Argenta are on the western limb of the Duncan anticline (see Figure 6-1). The only production for the area was from a number of the smaller silver-rich lead-zinc deposits (see Table 6-1). Four of these properties are veins and/or replacements in limestone and dolomite. The fifth property contains quartz veins carrying tetrahedrite. Of the occurrences in the Duncan Lake area, only the Duncan Mine is of particular relevance because of its mineral deposit characteristics and proximity to the Project. It is discussed below.

Duncan Mine

In general, Duncan Mine mineralization consists of disseminated to semi-massive lenticular zones of pyrite, sphalerite, galena, and minor pyrrhotite within dolomite and siliceous dolomite of the Badshot Formation. Mineralized zones are aligned essentially parallel to that of the enclosing strata, are elongate to the north, and plunge northward at low angles parallel to the axes of Phase II folds. The dolomite and siliceous dolomite that host mineralization are typically dark-grey with mottled, flecked and banded textures resulting from deformation. Mineralized zones identified during the detailed assessment of the Duncan Mine property can be more than 900 m in length, 150 m in depth and range up to 30 m thick. Average grades were typically <10% combined zinc and lead with zinc grades generally higher than that of lead. Silver content is believed to be low -- typical of Kootenay Arc type deposits.

The mineralized zones appear to be structurally controlled replacements of the dolomite. Relatively thick and continuous dolomite layers on the Duncan anticline have localized mineralization.

Figure 7-4, a drawing from Cominco in Fyles (1964), shows a cross-section through the Duncan Mine workings on the 1854 crosscut; it shows a pattern of folding and faulting and the distribution of three
stratiform sphalerite-galena mineralized zones: the No. 6 Zone in the west limb of the Duncan anticline and the No. 7 and No. 8 Zones on the east limb of the Duncan anticline (the No. 5 Zone is off-section). In this section both limbs of the fold are steeply dipping and upright, and the lenses of mineralization are stratiform and stratabound occurring within or near the bottom of the Badshot Formation. In the high-grade central layer of the No. 7 Zone, Muraro (1962) also noted the presence of several small grains of ruby silver that added silver values to the mineralization.

Figure 7-4: Vertical section along the main crosscut of the Duncan Mine (Fyles, 1964)
A description of the four zones outlined at the Duncan Mine, as taken from Fyles (1964), are provided in italics below:

No. 7 zone is a steeply dipping tabular body averaging 15 to 20 feet thick along the western contact of the siliceous dolomite. The zone as indicated by drilling plunges about 7 degrees to the north and is about 400 feet high. It has been followed for 3,000 feet in the drift and found in drilling beyond. The zone is layered, with a western layer in which dolomite, pyrite, and sphalerite are found in fairly well-marked bands; a central layer with lenticular masses of pyrite, galena, and sphalerite in carbonate layers associated with fine-grained quartz; and an eastern siliceous layer in which pyrite and sphalerite are the dominant sulphides. Some bands of sulphides within the layers follow small discontinuous, nearly isoclinal folds which plunge to the north at low angles. Bands of sulphides are a fraction of an inch to a few inches thick, and the grains of sulphides within them are generally less than 1 millimetre across.

No. 5 zone is below and to the south of No. 7 zone along the same western contact of the siliceous dolomite. It has the same plunge as No. 7 zone and is separated from it by a zone along the contact about 200 feet high in which there is only scattered sulphide mineralization.

No. 8 zone is a relatively small lens in the upper dolomite about 100 feet west of No. 7 zone. It dips at moderate angles to the east and, although not fully outlined, is 300 to 400 feet high parallel to the dip. It plunges to the north and appears to be offset on a steeply dipping strike fault above the main crosscut. Pyrite and sphalerite are the main sulphides, and galena has been found only in polished sections.

No. 6 zone is 300 to 400 feet west of No. 7 zone and is the most westerly and the largest zone found in the mine. The dominant sulphide is pyrite, with minor amounts of sphalerite and galena. Pyrrhotite is present locally in bands an inch to a few inches wide. The zone is lenticular in cross-section, approximately 300 feet high and 20 to 100 feet thick. The zone has been found in drilling for 3,000 feet along the plunge which is at low angles to the north, parallel to that of the other zones. The zone in the main crosscut is bounded on the east and probably offset by a westerly dipping fault. Most of the mineralization is uniformly fine-grained pyrite with varying small amounts of galena and sphalerite disseminated in closely spaced thin lenses or bands in siliceous dolomite. The siliceous dolomite appears to form a tight syncline. Pyrite near the fault on the eastern side locally forms rounded clusters resembling a sheared breccia. In the trough of the syncline it occurs in massive layers associated with limestone and siliceous dolomite.

Studies by Muraro of the textures of the sulphides, mainly from the zones in the Duncan mine, have shown that the pyrite is older than the galena and sphalerite, and that the pyrite is crushed and deformed, whereas the galena and sphalerite are not. The pyrrhotite in No. 6 zone is not obviously deformed and at least is partly formed by replacement of pyrite.

The character of mineralization at the Duncan Mine has a direct bearing on the Project because it is located in the limbs of the Duncan anticline which plunges gently northward across the Project. Importantly, exploration drilling on the Project to test the projected northerly extension of mineralization encountered at the Duncan Mine did intersect altered, silicified and mineralized Badshot Formation host rocks carrying significant values of zinc and lead over good widths.

The qualified person obtained the above information in respect of the Duncan Mine property from recorded exploration assessment reports that were submitted to the British Columbia Ministry of Energy.
and Mines for property assessment credits. The qualified person has been unable to verify such information, and the information is not necessarily indicative of the mineralization on the property that is the subject of this technical report.

7.4 LOCAL GEOLOGY

The descriptions that follow are compiled from numerous reports that have evaluated the Project area, including: assessment reports downloaded from the B.C. Ministry of Energy and Mines’ ARIS (Assessment Report Indexing System) website; publications of the B.C. Geological Survey (B.C. Ministry of Energy and Mines); and hard copy private and public reports assembled by Denny.

A map depicting the local geology of the Project area is shown in Figure 7-5, a Table of Formations (from Fyles, 1964) is shown in Table 7-2, and a legend for Figure 7-5 is shown in Table 7-3.

The Project is underlain primarily by fine-grained grey phyllitic schist of the Lower Index Formation (Plate 7-1) and green phyllitic chlorite schist of the Upper Index Formation (Plate 7-2). These rocks display the effects of tight to isoclinal folding (Plate 7-3) and overlie the Badshot Formation that is host to mineralization that has been intersected in diamond drilling on the Project and that was the subject of drilling and underground exploration on the Duncan Mine property immediately south of and adjoining the Project. The Badshot Formation outcrops south of the Project near the Duncan Mine adit, but does not outcrop on the Project.

The principal structural feature on the Project is the Duncan anticline. Regional mapping has shown that it is made up of Marsh-Adams Quartzite in its core and rocks of the Mohican, Badshot and Index formations on its limbs (Fyles, 1964). The axial trace of the Duncan anticline runs northward along the eastern side of Duncan Peninsula and then under Duncan Lake following an azimuth of about 335°. The fold plunges gently northward at about 5°-10° (Fyles, 1964). Most of the northern part of the peninsula is occupied by the eastern limb of the fold.

On northern Duncan Peninsula, the axial plane of the Duncan anticline curves gently westward, and its dip changes from vertical in the south to moderately east-dipping in the north with an eastern limb that is upright and a western limb, submerged beneath Duncan Lake, that is overturned. North of the peninsula the anticline itself is folded, perhaps by the Glacier Creek synform and/or the Comb Mountain antiform (Fyles, 1964).
Plate 7-1: Road cut exposing dark grey argillite of the Lower Index Formation, Jubilee Peninsula, Duncan Lake Project

Plate 7-2: Outcrop of green chlorite schist of the Upper Index Formation, Jubilee Peninsula, Duncan Lake Project
Table 7-2: Table of Formations, Duncan Lake Area (Fyles, 1964)

<table>
<thead>
<tr>
<th>Group</th>
<th>Formation</th>
<th>Map Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broadview.</td>
<td>6</td>
<td>Green and grey micaceous quartzite, greywacke, grit, and fine-grained mica schist.</td>
</tr>
<tr>
<td></td>
<td>Jowett.</td>
<td>5</td>
<td>Fine-grained chlorite schist and feldspar-chlorite schist.</td>
</tr>
<tr>
<td>Sharon Creek.</td>
<td>Ajar.</td>
<td>4</td>
<td>4(c) Dark grey to black argillite.</td>
</tr>
<tr>
<td></td>
<td>Triune.</td>
<td>4</td>
<td>4(b) Massive grey quartzite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4(a) Grey and black quartzite and argillite.</td>
</tr>
<tr>
<td>Lardeau</td>
<td></td>
<td></td>
<td>Upper Index:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3(a) Green mica schist and garnet mica schist; minor lenses of grey schist and limestone.</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>3</td>
<td>Lower Index:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3(b) Creamy-white and grey fine-grained limestone, micaceous limestone, brownish quartzite, and fine-grained grey and green schist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3(a) Grey and dark-grey fine-grained mica schist, calcareous dark-grey mica schist, and dark-grey limestone; locally grey garnet and staurolite-mica schists.</td>
</tr>
<tr>
<td></td>
<td>Badshot.</td>
<td>2</td>
<td>Grey and white crystalline limestone, dolomite, and siliceous dolomite.</td>
</tr>
<tr>
<td>Mohican</td>
<td></td>
<td>2</td>
<td>Interlayered limestone or dolomite and green or grey mica schist; porphyroblasts of garnet, chloritoid, or biotite in higher metamerphic grades.</td>
</tr>
<tr>
<td>Hamill</td>
<td>Marsh-Adams.</td>
<td>1</td>
<td>Grey and brown micaceous quartzite and mica schist; white quartzite and minor brown-weathering limy schist.</td>
</tr>
</tbody>
</table>
Table 7-3: Local Geology Legend

<table>
<thead>
<tr>
<th>Legend</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNARY</td>
<td>Deposits of fluvial, lacustrine and eolian origin, recent and prehistoric.</td>
</tr>
<tr>
<td>CREDOUS</td>
<td>Quaternary deposits, Pleistocene in origin.</td>
</tr>
<tr>
<td>LOWER FORMATION</td>
<td>Gray, white or dark gray, medium to coarse-grained sand and pebble gravel; upper gravel to sand.</td>
</tr>
<tr>
<td>UPPER FORMATION</td>
<td>Medium to coarse-grained sand and pebble gravel; upper gravel to sand.</td>
</tr>
<tr>
<td>CLAY</td>
<td>Flat, featureless, gray, white or dark gray, medium to coarse-grained sand and pebble gravel; upper gravel to sand.</td>
</tr>
<tr>
<td>LIMESTONE</td>
<td>Gray, white or dark gray, medium to coarse-grained sand and pebble gravel; upper gravel to sand.</td>
</tr>
<tr>
<td>GEOLOGICAL BOUNDARY</td>
<td>Gray, white or dark gray, medium to coarse-grained sand and pebble gravel; upper gravel to sand.</td>
</tr>
<tr>
<td>FAULT</td>
<td>Mechanical boundary, geologic contact, or fracture.</td>
</tr>
<tr>
<td>INTERPRETATION</td>
<td>各地体層の解釈。</td>
</tr>
</tbody>
</table>

Source:
Thompson, R.I. and Dhesi, P. (compilers)
2009: Geology, Duncan Lake, British Columbia; G.S.C
Open File 6183, Scale: 1:50,000
There are a number of mineralized zones and showings on the Project which are generally stratiform in nature, and are regarded to be either syngenetic or hydrothermal replacement deposits that formed prior to deformation and metamorphism (Addie, 1970; Muraro, 1962; Hoy, 1982; Nelson, 1991); all occur in the crest and limbs of the Duncan Anticline, the principal structure of interest on the Project.

Local mineralization on the Duncan Lake Project consists of that identified from drilling on Jubilee Peninsula north of Teck’s Duncan Mine property, and a number of British Columbia Ministry of Energy and Mines MINFILE (‘MINFILE’) occurrences that outcrop between Duncan Mine and Glacier Creek to the south.

7.5.1 North of Duncan Mine

The northern part of the Project covers what is interpreted to be the drilled northerly extension of the historic Duncan Mine (MINFILE: Duncan No.5 to No.8 (082KSE023)) located on claims owned by Teck Corp. Drilling on this northern part of the Project by Cominco intersected low-grade to high-grade zinc-lead mineralization in the east limb of the Duncan Anticline that are correlated with the No.7 or No.8 zones at Duncan Mine. Significant intersections include 5.21% Zn and 3.10% Pb over an estimated true width of 12.2m in hole C89-5 (Craig, 1989) and 6.20% Zn and 6.3% Pb over an estimated true width of 7.5m (Ransom and Pride, 1998). Further north, an undrilled area may also host zinc-lead mineralization of a similar ilk to that intersected and observed in the 1989-1997 drill core.
The following description of mineralization found from drilling on the Duncan Lake Project is taken from assessment reports written by Cominco (Teck) personnel that describe the results of diamond drilling programs completed from 1989-1997. There has not been any drilling done on the Project since 1997, so the information outlined below is the most current. The authors own observations of select drill core intervals are also included.

Mineralization does not outcrop in the northern part of the Project, but extends northward at depth from the Duncan Mine property, where stratiform mineralization had been identified during earlier surface exploration and underground development, onto claims that in part comprise the Project. A total of twelve drill holes on three sections tested mineralization on the Project. The holes were drilled from the three sites spaced 300-350m apart along the western shoreline of Jubilee Peninsula to depths of approximately 350m below the level of Duncan Lake. The holes were drilled to the southwest at various dips from three sites covering a total strike length of approximately 650 m. They targeted mineralization on the east-dipping, east limb of the Duncan anticline below its perceived crest and produced three successive interpretive cross-sections; Section A is about 1650 m north of the Duncan Mine adit, Section B is 350 m farther north, and Section C is an additional 300 m northward. Some of the drill intersections were correlated with the No. 7 and No. 8 zones in the Duncan Mine. The work confirmed that altered and mineralized carbonate strata of the Badshot Formation extends from the Duncan Mine adit northward for more than 2.3 km, the northern 650 m of which is on the Project, and is open to the north and at depth.

One or more holes from each site intersected two main zones of mineralization giving a minimum strike length of mineralized Badshot Formation on the Project of approximately 650 m. The two zones were correlated with the Duncan Mine No. 7 zone, which occurs at the contact between the top of the Badshot carbonate and base of an overlying silicified rock, and the Duncan Mine No. 8 zone near the base of the Badshot carbonate (Craig, 1989; Westcott and Pride, 1985; Pride, 1997; Ransom and Pride, 1998). The broader altered and mineralized zones can be correlated between holes and from section to section over a length of 650 metres, but higher grade intervals are somewhat discontinuous, being broken and offset by steeply west dipping normal faults (Ransom and Pride, 1998).

Drilling on-section has determined that the down-dip dimension of the broader zones of alteration and mineralization is at least 75 m on Section A and at least 150 m on Section B. True widths of significant zones (grades of more than 5% combined zinc-lead) within the broader mineralized intervals range from 0.6 m in hole C95-11 to 14.7 m in hole C97-12 (Ransom and Pride, 1998). The dimensions of the broader zones of mineralization have been shown by drilling to be 650 m in length and 75 - 150 m in down-dip expression.

The host Badshot carbonate, where unaltered to weakly altered, is described primarily as white to dark grey fine-grained dolomite with black wispy bands and common hairline fractures. Limestone is less common and ranges from white to grey. The overlying silicified rock is typically light to dark grey and thinly banded to locally mylonitic; locally it is brecciated.

The mineralized zones are described as lenticular and decrease in thickness down dip on the east limb. Three faults that are parallel to the axis of the anticline cut the east limb; they are west-side down with left lateral movement. In the mineralized zones, sulphides occur as densely disseminated aggregates,
wispy bands 5-15 cm thick, and occasional subtle, weakly disseminated bands up to 1.5m thick that parallel host rock foliation. Sulphide mineralization consists of 5-70% fine to medium-grained pyrite, 1-15% red-brown, yellow or grey sphalerite, and 1-15% galena (Plate 7-5). Sulphide mineralization locally forms the matrix in breccias with sub-rounded silica rock clasts. Occasional white quartz veins with pyrite selvages have been noted.

7.5.2 South of Duncan Mine

Five MINFILE showings are located on the southern part of the Project: Duncan No.1 (082KSE019), Duncan No.2 (082KSE020), Duncan No.3 (082KSE021), Duncan No.4 (082KSE022), and Vin (082KSE089).

Duncan No.1

The Duncan No.1 zone main workings occur on the north side of Glacier Creek at an elevation of about 790m. Early workings, which date to at least 1926, consist of open cuts and a short tunnel on the east limb of the Duncan Anticline that exposed a wide mineralized zone in limestone of the Badshot Formation. Mineralization consisted mainly of scattered bands and streaks of fine-grained sphalerite, galena and pyrite described as replacement deposits. A chip sample collected across 6 feet (1.8m) of one of the open cuts graded 3.8% Pb, 18.1% Zn, 0.55 oz/ton Ag and 0.02 oz/ton Au (Minister of Mines, 1926).

The No.1 zone was the subject of diamond drilling in 1927 and in 1951, and further underground development and underground diamond drilling (24 holes, 1183m) took place in 1952 (Minister of Mines, 1952). More than 300m of underground workings exposed the No.1 zone for a distance of 70m along strike. Within the workings, the zone is up to 3m wide, dips steeply to the east and plunges at low angles to the north. The average grade over the entire length of the zone is 2.46% Pb and 6.36% Zn across an average width of 1.1m (Berens River Mines Annual Report, 1952).

Duncan No.2

The Duncan No.2 zone is located about 1.5km northwest of the No.1 zone on the west limb of the Duncan Anticline on the crest and western side of the ridge between Glacier Creek and Duncan Lake.

Mineralization consists of fine-grained galena, sphalerite and pyrite in thin, tightly folded layers of altered limestone of the Badshot Formation. The sulphides occur as lenticular masses along the crests and troughs of small folds which plunge 10-15° NW. Trenching exposed several mineralized zones, each several metres wide, for tens of metres along plunge; however drilling was unable to intersect mineralization at depth (Fyles, 1964).

Duncan No.3

The Duncan No.3 zone is on the south side of the entrance to the east arm of Duncan Lake, approximately 3km north of the No.2 zone. It is situated on the east limb of the Duncan Anticline. Mineralization is similar to that of the No.1 and No.2 zones although descriptions of the zone are scant (Fyles, 1964).
Duncan No.4

The Duncan No.4 zone is on the south shore of Jubilee Peninsula (on the north side of the entrance to the east arm of Duncan Lake, approximately 1.5km north-northwest of the No.3 zone. It is situated on the east limb of the Duncan Anticline. Little documentation exists for the No.4 zone.

Vin

The Vin zone is the farthest south of the five occurrences and is located on the north facing slope across Glacier Creek from the No.1 zone. Mineralization consists of disseminated pyrite, sphalerite and galena in dolomite and siliceous dolomite on the eastern limb of the Duncan anticline; the zone has been explored with a series of hand trenches and 575m of diamond drilling in seven holes (Fyles, 1964).

![Plate 7-4: Wispy pyrite-sphalerite mineralization in banded ‘silica rock’ from Hole C97-5A](image-url)
Plate 7-5: Interval of semi-massive to massive sphalerite-pyrite-galena mineralization from Hole C97-12
8 DEPOSIT TYPES

In British Columbia, lead-zinc (+/-silver, gold) deposits in carbonate rocks (other than skarns) can be divided into three major genetic categories: 1) Syngenetic, Kootenay Arc Type, 2) Low-Temperature Epigenetic, Mississippi Valley Type, and 3) High-Temperature Epigenetic, Manto Type (Nelson, 1991). They are concentrated almost exclusively in early Paleozoic miogeoclinal carbonate sequences (Hoy, 1982; Nelson, 1991), including Lower Cambrian, Middle Cambrian, Siluro-Devonian and Middle Devonian units.

A summary of mineral deposit types found in the Duncan Lake area is provided by Fyles (1964), who states “The most important mineral deposits in the Duncan Lake area are relatively low-grade zones of lead-zinc mineralization that have been extensively explored, but have not yet been mined. They are referred to as Duncan type...”. Duncan type deposits are referred to as syngenetic Kootenay Arc type deposits by Nelson (1991) and are in part analogous in their setting to large carbonate-hosted lead-zinc orebodies found in Ireland (e.g. Tynagh, Navan, Silvermines, and Gortdrum), termed Irish type.

Kootenay Arc type deposits are known throughout the length of the Kootenay Arc from north of Revelstoke, British Columbia, in the north to Metaline Falls, Washington State, in the south.

8.1 KOOTENAY ARC TYPE ZINC-LEAD±SILVER DEPOSITS (HÖY, 1996)

Kootenay Arc type deposits occur in platformal sequences on continental margins which commonly overlie deformed and metamorphosed rocks of the continental crustal crust. The local geological setting is adjacent to normal growth faults in transgressive, shallow marine platformal carbonate rocks, commonly localized near basin margins. Characteristic host rocks are thick, non-argillaceous carbonate sequences which are commonly the lowest pure carbonates in the stratigraphic succession. The same continental margin carbonate sequences may host sedimentary exhalative (SEDEX) deposits, Mississippi Valley type (MVT) deposits and Kootenay Arc or Irish type deposits with the latter sharing some similar geological attributes with SEDEX and MVT deposits suggesting a genetic link. Other potentially associated deposit types may include sediment-hosted barite and carbonate-hosted disseminated gold-silver deposits, a new target on the Project.

Examples in the Kootenay Arc include: Reeves MacDonald, H.B., Jersey-Emerald, Duncan and Pend Oreille. Grade and Tonnage: Mined deposits in the Kootenay Arc average from 6-7 Mt with grades of 3-4% Zn, 1-2% Pb, and 3-4 g/t Ag (Nelson, 1991). Pend Oreille mine, the largest producer in the Metaline area, has a long history that includes production of 14.8 million tonnes containing 2.3% zinc and 1.1% lead (Metaline Contact Mines, 2004). The mine was reopened by Teck in 2014 and currently operates at an approximate throughput of 2,000 tonnes per day of 6-8% Zn and 1-2% Pb.

Examples in Ireland include: Navan, Lisheen, Tynagh, Silvermines. Grade and Tonnage: Irish Deposits are typically < 10 Mt grading 5-6% Zn, 1-2% Pb and 30 g/t Ag. The largest deposit, Navan, produced 36 Mt and has remaining reserves of 41.8 Mt containing 8% Zn and 2% Pb (Hitzman and Beaty, 1996).
8.2 **Exploration Model – Kootenay Arc-Type Deposits**

The Kootenay Arc is a northerly trending arcuate belt, convex to the east, of thrust-imbricated Proterozoic to Early Mesozoic miogeoclinal to basinal strata. Lower Paleozoic stratigraphy in the Kootenay Arc differs significantly from sections in the Rocky Mountains in that the carbonate sequences are much thinner and basinal shales and siliciclastics with interbedded volcanic rocks (i.e. Lardeau Group) were deposited over a much longer period of time (Nelson, 1991). Carbonate rocks of the Lower Cambrian Badshot Formation form part of this sequence, occupying a position between the underlying siliciclastics of the Proterozoic to Lower Cambrian Hamill Group and overlying Lardeau Group. Limestone of the Badshot Formation and its equivalents, such as the Reeves limestone near Salmo, host a number of massive sulphide deposits. Most of the larger deposits, some of which have been mined or seen advanced levels of exploration, such as Pend Oreille, Reeves MacDonald, HB, Jersey and Duncan Mine (McClelland and Whitebread, 1965; Fyles and Hewlett, 1959; Muraro, 1962 and 1966; Addie, 1970; Hoy, 1982), are generally regarded to be stratiform and stratabound in nature, but with a range of postulated genetic origins.

The deposits are localized in a specific carbonate unit, the Badshot Formation or its equivalent, even though chemically and megascopically similar carbonates occur in the underlying Mohican Formation. Some of the deposits are well-layered and are deformed and metamorphosed along with the enclosing host stratigraphy. Mineralization ranges from massive beds to continuous laminae of pyrite, sphalerite and galena that follow bedding in the host carbonate, features that support a syngenetic origin. Dolomite alteration typically envelops the sulphide deposits, and the dolomite is typically brecciated. Mineralized breccias can consist of angular clasts of carbonate floating in a sulphide matrix and give rise to an epigenetic replacement origin for the deposits.

In general, the deposits are lenticular and are typically elongate parallel to the regional structural grain, although individual zones can be somewhat irregular in outline. At the Duncan Mine deposit, lead-zinc mineralization is equally distributed in the upper dolomite while zinc-dominated mineralization occurs in the lower dolomite (Muraro, 1962).

Regarding their genetic origin Kootenay Arc type deposits have been described as:

- replacement deposits controlled by Phase 2 folds and locally by faults (Fyles and Hewlett, 1959) with close spatial association of mineralization to structures and host rock brecciation
- syngenetic deposits with sulphides accumulating in small basins in a deep-water carbonate platform (Addie, 1970)
- hydrothermal replacement deposits that are controlled by stratigraphy and formed prior to deformation and metamorphism (Muraro, 1962); mineralization occurs in dolomite or silicified carbonate rock
- deposits that span the syngenetic-diagenetic spectrum (Hoy, 1982): sulphides accumulated along with shallow-water carbonates and also in cavities or collapsed breccia zones in lithified Badshot or Reeves strata.
- syngenetic Kootenay Arc type deposits that are in part analogous in their setting to Irish type lead-zinc deposits (Nelson, 1991) well-described in Hitzman and Beaty (1996)

An integrated genetic model for Kootenay Arc zinc lead deposits is showing in Figure 8-1.
9 EXPLORATION

In 2017, a work program completed by Rokmaster on the Duncan Lake zinc-lead property consisted of i) the recovery of more than 200 boxes of NQ drill core, and examination and sampling of selected sections of alteration and mineralization from the recovered core, ii) preliminary archaeological field reconnaissance of an area proposed for exploration required by the BC Ministry of Energy, Mines and Petroleum Resources, and iii) baseline water sampling and assessment of two areas located within the area of proposed exploration.

9.1 CORE RECOVERY AND SAMPLING PROGRAM

The historic core sampling and resampling program served to expand certain mineralized intervals that had not been thoroughly sampled, and also provided assays for silver and gold for select intervals that had not previously been analyzed for the two precious metals. The latter sampling also intended to determine if significant concentrations of the precious metals were associated specifically with zinc-lead mineralization and/or its enclosing altered host rock.

More than three-quarters of the core boxes from this period, while quite disheveled (Plate 9-1), still had metal identification tags listing drill hole number, ‘from-to’ in metres and box number. Unfortunately, many boxes containing well-mineralized intervals had been robbed and/or had been pulled from the core racks or stacks and carelessly laid on the ground. In some cases core boxes have been dumped of their contents.
Plate 9-1: State of historic drill core in 2016 prior to recovery

The process of recovering, in some cases re-boxing, and re-racking core took place intermittently throughout the summer months following the construction of a seasonal camp at the site of the stored core (Plate 9-2).

Plate 9-2: Recovered and reorganized historic core, 2017
Core from several complete sections of previously sampled mineralization were examined and short sections were sampled in order to characterize the mineralization. It was noted that not all of the visually mineralized sections observed were sampled. A review of the available data (holes drilled in 1989, 1995 and 1997) showed that less than 30% of the sampled intervals were analyzed for silver, and none were analyzed for gold. Brief descriptions and results for gold, silver, lead and zinc are shown in Table 9-1.

9.2 Analytical Results

Reported silver grades from the 2017 sampling program ranged from 0.08 ppm Ag to a maximum value of 61.50 ppm Ag; 5 of the 21 samples returned silver values >3.5 ppm Ag, while 11 of the 21 samples returned silver values of <1 ppm Ag. The higher silver values generally correlated with higher lead values. Reported gold grades from the 2017 sampling program ranged from 4 – 44 ppb Au; the higher gold values correlated most strongly with higher zinc and silver; samples carrying negligible to low zinc-lead grades have correspondingly low silver grades.

Samples 3730-3732 (covering a consecutive 2.80m length from 727.2-730.0m in hole C95-10) were collected to verify earlier results. The weighted average for the interval was 19 ppb Au, 1 ppm Ag, 1.28% Pb and 5.80% Zn, which is slightly elevated from the historic combined Zn-Pb values and provides precious metal values.

Samples 3735-3737 (covering a consecutive 3.0m interval from 708.4-711.4m in hole C95-10 in the hangingwall of the well-mineralized intersection mentioned above) consisted of thin-bedded to laminated ‘silica rock’ with wispy bands of pyrite and sphalerite that had not previously been sampled. The weighted average for the interval were weakly anomalous in silver, lead and zinc.

Sample 3734 (from 621.35-622.4m in hole C97-12) was collected to determine the presence of silver in a galena-rich interval of a well mineralized intersection. It returned a value of 61.5 ppm Ag along with 43 ppb Au, 20% Pb and 5.38% Zn, proving that economically important levels of silver (+/-gold) occur on the Duncan Lake property.

Samples 3743-3744 (covering a 2.02m interval from 618.05-620.07m in hole C97-5A) was also collected to determine the presence of silver in a moderately well-mineralized intersection of thinly bedded ‘silica rock’. It returned a weighted average of 4.7 g/t Ag, 22 ppb Au, 0.89% Pb and 2.38% Zn, once again showing the presence of significant levels of silver.

Whole rock analyses showed that:

- four samples described as ‘silica rock’ contained from 64.03–84.74% SiO2 and from 3.20-9.11% CaO;
- two samples described as dolomitic limestone contained from 7.56-9.87% CaO and from 2.13-4.78% MgO;
- five samples contained appreciable sulphide mineralization (from about 10% to more than 50% massive sulphides); these sulphide-rich samples coincided with the five highest contents of Fe2O3 (from 13.9-44.82%) and the five highest amounts of LOI (from 9.65-26.36%).

The 2017 observations and sample results serve to verify that zinc-lead mineralization in dolomitic carbonate units consistent with the Badshot Formation was intersected in drilling conducted on the property from 1989-1997, that not all of the well-mineralized core intervals had been adequately sampled, and that silver may be an important economic contributor to certain mineralized intervals.
Table 9-1: 2017 Analytical Results

<p>	Sample ID	Drillhole	From (m)	To (m)	Interval (m)	Sample Notes	Description	PWE-100 Wt. (kg)	Method	FAS-111 Au (ppm)	ICF-6Pb Pb (%)	ICF-6Zn Zn (%)	IMS-230 Ag (ppm)	IMS-230 Fe (%)
3726	C89-5	550.95	556.85	5.90	composite of remaining halved core from interval (~50%); higher grade core pieces may have been removed from this interval	grey, mottled limestone with f to m-gr blebs and stringers of pyrite (2-3%), pale brown sphalerite (2-3%) & 1-2% galena	2.33	0.028	1.04	3.42	1.42	9.06		
3727	C89-5	543.82	545.15	1.33	1/4 core	silica rock or silicified limestone with pods and layers of sparry calcite (recrystallized limest?) with x-cutting stringers and laminae of 2-3% combined pyrite > sphalerite	1.53	0.018	0.83	2.53	1.03	7.89		
3728	C89-5	545.15	546.65	1.50	1/4 core	silica rock, folded with m to c-gr aggregates of pyrite parallel to folding; traces of pale brown sphalerite	1.66	0.011	0.23	1.05	0.2	2.71		
3729	C95-10	725.5	726.5	1.00	1/4 core	30-40% f-gr pyrite & 3-5% brown sphalerite in grey phyllitic limestone	1.43	0.017	0.28	4.6	0.56	13.81		
3730	C95-10	727.2	728	0.80	1/4 core	30-40% f-gr pyrite, 2-3% brown sphalerite & trace galena in grey phyllitic limestone; sample interval includes 20cm quartz-calcite vein	0.86	0.013	1.19	2.83	1.06	6.23		
3731	C95-10	728	729	1.00	1/4 core	30-40% f-gr pyrite, 3-5% brown sphalerite & trace galena in grey phyllitic limestone	1.53	0.019	1.95	7.45	1.22	12.03		
3732	C95-10	729	730	1.00	1/4 core	20-30% m-gr pyrite & 3-5% brown sphalerite in grey phyllitic limestone with calcite nodules	1.45	0.023	0.69	6.53	0.63	10.3		
3733	C95-10	706.98	708.28	1.30	1/2 core	silica rock - silicified, thin-bedded siltstone(?) with wispy 1-2mm bands of pyrite+/	3.03	0.007	0.03	0.81	0.26	1.29	</p>	
<table>
<thead>
<tr>
<th>Sample</th>
<th>Drillhole</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Interval (m)</th>
<th>Sample Notes</th>
<th>Description</th>
<th>PWE-100 Wt. (kg)</th>
<th>Method</th>
<th>FAS-111 Au (ppm)</th>
<th>ICF-6Pb Pb (%)</th>
<th>ICF-6Zn Zn (%)</th>
<th>IMS-230 Ag (ppm)</th>
<th>IMS-230 Fe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3734</td>
<td>C97-12</td>
<td>621.35</td>
<td>622.4</td>
<td>1.05</td>
<td>1/4 core</td>
<td>semi-massive to massive m to c-gr galena> brown sphalerite> pyrite</td>
<td>1.53</td>
<td>0.043</td>
<td>>20</td>
<td>5.38</td>
<td>61.5</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>3735</td>
<td>C95-10</td>
<td>708.4</td>
<td>709.4</td>
<td>1.00</td>
<td>1/2 core</td>
<td>silicified, thin bedded grey argillite and limestone with 1-2% thin laminae of pyrite/+/- sphalerite</td>
<td>2.47</td>
<td>0.006</td>
<td>0.04</td>
<td>0.27</td>
<td>0.15</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>3736</td>
<td>C95-10</td>
<td>709.4</td>
<td>710.4</td>
<td>1.00</td>
<td>1/2 core</td>
<td>weakly silicified, thin bedded grey argillite and limestone with 1-2% thin laminae of pyrite/+/- sphalerite</td>
<td>2.48</td>
<td>0.004</td>
<td>0.1</td>
<td>0.6</td>
<td>0.25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3737</td>
<td>C95-10</td>
<td>710.4</td>
<td>711.4</td>
<td>1.00</td>
<td>1/2 core</td>
<td>silicified, thin bedded grey argillite and limestone with 1-2% thin laminae of pyrite/+/- sphalerite as laminae</td>
<td>2.35</td>
<td>0.004</td>
<td>0.01</td>
<td>0.02</td>
<td>0.13</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>3738</td>
<td>C91-7</td>
<td>522.55</td>
<td>523.3</td>
<td>0.75</td>
<td>1/2 core</td>
<td>dolomitic limestone with 1-2% pyrite peroxy +/- sphalerite as laminae</td>
<td>2.04</td>
<td>0.005</td>
<td>0.02</td>
<td>0.21</td>
<td>0.45</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>3739</td>
<td>C91.8</td>
<td>interval</td>
<td>unknown</td>
<td>composite of remaining halved core in one core box</td>
<td>silicified dolostone/limestone/argillite with 2-3% laminae of pyrite and pale green sphalerite laminated dolomitic limestone and minor argillite, locally siliceous, wispy bands of sphalerite-pyrite grading into 'clastic-looking' semi-massive pyrite-sphalerite-galena; estimate 15-20% pyrite, 4-6% sphalerite & 2-3% galena</td>
<td>1.27</td>
<td>0.004</td>
<td>0.52</td>
<td>2.87</td>
<td>0.08</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3740</td>
<td>C97-15</td>
<td>397.3</td>
<td>398.8</td>
<td>1.50</td>
<td>1/4 core</td>
<td>laminated dolomitic limestone and minor argillite, locally siliceous, wispy bands of sphalerite-pyrite grading into 'clastic-looking' semi-massive pyrite-sphalerite-galena; estimate 15-20% pyrite, 4-6% sphalerite & 2-3% galena</td>
<td>2.03</td>
<td>0.019</td>
<td>2.73</td>
<td>4.6</td>
<td>3.74</td>
<td>13.31</td>
<td></td>
</tr>
<tr>
<td>Sample ID</td>
<td>Drillhole ID</td>
<td>From (m)</td>
<td>To (m)</td>
<td>Interval (m)</td>
<td>Sample Notes</td>
<td>Description</td>
<td>PWE-100 Wt. (kg)</td>
<td>Method Analyte</td>
<td>FAS-111 Au (ppm)</td>
<td>ICF-6Pb</td>
<td>ICF-6Zn</td>
<td>IMS-230 Ag (ppm)</td>
<td>IMS-230 Fe (%)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3741</td>
<td>C97-15</td>
<td>473.4</td>
<td>474.9</td>
<td>1.50</td>
<td>1/4 core</td>
<td>sulphide breccia with local laminated section; averages 10-15% pyrite, 6-8% sphalerite and 3-4% galena</td>
<td>2.22</td>
<td>0.044</td>
<td>3.55</td>
<td>7.42</td>
<td>1.21</td>
<td>24.97</td>
<td></td>
</tr>
<tr>
<td>3742</td>
<td>C97-15</td>
<td>492.4</td>
<td>493.3</td>
<td>0.90</td>
<td>1/4 core</td>
<td>massive to semi-massive, laminated to thin layered pyrite-sphalerite-galena with dolomitic carbonate nodules</td>
<td>1.47</td>
<td>0.039</td>
<td>3.26</td>
<td>3.87</td>
<td>0.34</td>
<td>28.07</td>
<td></td>
</tr>
<tr>
<td>3743</td>
<td>C97-5A</td>
<td>618.05</td>
<td>619.07</td>
<td>1.02</td>
<td>1/4 core</td>
<td>silica rock with faint fabric (bedding?) @ 45 TCA with 8-10% pyrite, 2-3% sphalerite & trace galena</td>
<td>1.25</td>
<td>0.022</td>
<td>0.36</td>
<td>2.29</td>
<td>5.13</td>
<td>9.21</td>
<td></td>
</tr>
<tr>
<td>3744</td>
<td>C97-5A</td>
<td>619.07</td>
<td>620.07</td>
<td>1.00</td>
<td>1/4 core</td>
<td>silica rock with faint fabric (bedding?) @ 45 TCA with 5-6% pyrite & 1-2% sphalerite; cut by bull-white quartz vein @ 60 TCA</td>
<td>1.21</td>
<td>0.022</td>
<td>1.44</td>
<td>2.48</td>
<td>4.17</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>3745</td>
<td>C97-12</td>
<td>610.82</td>
<td>611.72</td>
<td>0.90</td>
<td>1/2 core</td>
<td>silica rock with x-cutting stringers & laminae of 2-3% combined pyrite>sphalerite</td>
<td>2.23</td>
<td>0.018</td>
<td>0.01</td>
<td>1.1</td>
<td>0.89</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>3746</td>
<td>C97-12</td>
<td>612.56</td>
<td>614.14</td>
<td>1.58</td>
<td>1/4 core</td>
<td>silica rock with semi-massive (20-25%) pyrite>sphalerite+galena</td>
<td>2.26</td>
<td>0.017</td>
<td>0.35</td>
<td>3.25</td>
<td>5.4</td>
<td>29.74</td>
<td></td>
</tr>
</tbody>
</table>
10 DRILLING

10.1 HISTORIC DRILLING ON PENINSULA NORTH OF DUNCAN MINE

The following section is a summary of exploration drilling completed on the Duncan Lake Project by Cominco during four phases of diamond drilling completed from 1989-1997. Information was gathered from private company reports and assessment reports 18942, 24032 and 25480 (Craig, 1989; Westcott and Pride, 1985; Ransom and Pride, 1998) that provide a detailed review of drilling and include drill logs, analytical results, interpretations and conclusions. The latter reports can be obtained in PDF format from B.C.’s Ministry of Energy and Mines ARIS website at http://www.em.gov.bc.ca/mining/Geolsurv/Aris/default.htm.

There are a total of twelve (12) known drill holes on the property with a total core length of 8,333.9 m. Several different drill contractors were used, including Tonto Drilling of Burnaby, B.C. in 1989 and Falcon Drilling of Prince George, B.C. in 1995 and 1997, and the types of drills utilized included a Longyear 44 and a Boyles 56A. Down-hole survey data was collected using a Sperry Sun instrument (model unknown).

Holes were typically started with HQ diameter coring equipment to depths of anywhere from 200 to 500 metres, then reduced to NQ diameter coring equipment to the end of each hole. The location of all known holes drilled on the Project are shown on Figure 10-1. Drillhole coordinates, orientations and total depths are listed in Table 10-1. A cross-section through the central part of the zone is shown in Figure 10-2. Select historic diamond drilling results for zinc and lead, with actual core lengths and calculated true thicknesses, are presented in Table 10-2. A few drill core samples were evaluated for silver during the 1989 and 1995 programs with individual samples ranging in grade from less than detection (<0.4 ppm Ag) to 6 ppm Ag; 78% of the silver values reported were less than 1 ppm Ag. The relationship between the true thickness and core length (or apparent thickness) was determined by Cominco geologists, however the methods used to determine true thickness were not reported and are not known.

Each phase of drilling tested the east limb of the Duncan anticline below the perceived crest of the structure. The holes were drilled to the southwest at various dips from three sites over a total strike length of approximately 650 m and produced three successive interpretive cross-sections; Section A is about 1,650 m north of the Duncan Mine adit, Section B is 350 m farther north, and Section C is an additional 300 m northward. Therefore the known minimum strike length of mineralized Badshot Formation on the Project as confirmed by previous drilling is approximately 650 m.
Table 10-1: Location and Orientation of Diamond Drill Holes – Duncan Lake Project

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>Easting</th>
<th>Northing</th>
<th>Elev (m)</th>
<th>Total Depth (m)</th>
<th>Azimuth</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>C89-5</td>
<td>503149</td>
<td>5580872</td>
<td>579.16</td>
<td>809.2</td>
<td>237</td>
<td>-55</td>
</tr>
<tr>
<td>C89-6</td>
<td>503149</td>
<td>5580872</td>
<td>579.16</td>
<td>714.9</td>
<td>240</td>
<td>-60</td>
</tr>
<tr>
<td>C91-7</td>
<td>503184</td>
<td>5580534</td>
<td>581.17</td>
<td>594.7</td>
<td>240</td>
<td>-56</td>
</tr>
<tr>
<td>C95-9</td>
<td>503027</td>
<td>5581202</td>
<td>579.16</td>
<td>207.0</td>
<td>237</td>
<td>-49</td>
</tr>
<tr>
<td>C95-10</td>
<td>503027</td>
<td>5581202</td>
<td>579.16</td>
<td>997.9</td>
<td>237</td>
<td>-62</td>
</tr>
<tr>
<td>C95-11</td>
<td>503027</td>
<td>5581202</td>
<td>579.16</td>
<td>726.9</td>
<td>237</td>
<td>-56</td>
</tr>
<tr>
<td>C97-12</td>
<td>503149</td>
<td>5580872</td>
<td>579.16</td>
<td>836.4</td>
<td>237</td>
<td>-47</td>
</tr>
<tr>
<td>C97-13</td>
<td>503149</td>
<td>5580872</td>
<td>579.16</td>
<td>713.2</td>
<td>239</td>
<td>-42</td>
</tr>
<tr>
<td>C97-14</td>
<td>503027</td>
<td>5581202</td>
<td>579.16</td>
<td>850.7</td>
<td>237</td>
<td>-52</td>
</tr>
<tr>
<td>C97-15</td>
<td>503184</td>
<td>5580534</td>
<td>581.17</td>
<td>587.6</td>
<td>238</td>
<td>-58</td>
</tr>
<tr>
<td>C97-16</td>
<td>503184</td>
<td>5580534</td>
<td>581.17</td>
<td>598.5</td>
<td>237</td>
<td>-56</td>
</tr>
<tr>
<td>C97-5A</td>
<td>503149</td>
<td>5580872</td>
<td>579.18</td>
<td>696.8</td>
<td>237</td>
<td>-52</td>
</tr>
</tbody>
</table>

1989 Drilling

The two drill holes completed by Cominco in 1989 targeted the northward projection of stratiform mineralization that had been identified during earlier underground development and drilling at the Duncan Mine located approximately 2,000 m to the south. Both holes were drilled from the same collar location and form part of Section B (Figure 10-2). Core recovery was reported to be in the 98% range (Craig, 1989). Hole C89-5 intersected four significant intervals of mineralization within a mineralized horizon from 541 – 700 m, while hole C89-6, drilled at a lower elevation in the east limb of the Duncan anticline, intersected one mineralized interval of note (see Table 10-2) within a mineralized horizon from 602 – 642 m. The two drill holes proved that mineralization was present in the east limb of the Duncan anticline a distance of 2 km from the Duncan Mine adit (Craig, 1989).

1991 Drilling

The angle hole C91-7 was the first to be drilled on Section A and was drilled to the. It intersected several discrete mineralized horizons from about 442 – 490 m and a broad low grade zone from 502 – 570 m (Ransom and Pride, 1998). Core recovery data is not known for the 1991 drilling. Two follow-up holes were drilled from the same collar location in 1997 and are described below.

1995 Drilling

Two of three holes drilled in 1995, C95-10 and C95-11, penetrated mineralized dolomite and marble/limestone of the Badshot Formation; hole C95-9 was terminated at a length of 207.0 m because of extreme shallowing of its dip to just -38° that, if completed, would have otherwise missed its target. All three holes were drilled from the same collar location on Section C, 320 m north of the 1991 drilling.
Holes C95-10 (from 724.8-748.4m) and C95-11 (from 675.3-711.3m) intersected two mineralized horizons, an *Upper Mine Dolomite* and a *Lower Mine Dolomite* that were correlated with the No.7 and No.8 zones of the Duncan Mine (Westcott and Pride, 1985). Core recovery was reported to be 98-99% range (Westcott and Pride, 1985). Sulphide mineralization was found to be similar to that observed along the Duncan anticline trend, consisting of 5-70% fine to medium-grained pyrite, 1-10% red-brown, yellow or grey sphalerite, and 1-3% galena. Sulphides occur as densely disseminated aggregates, wispy bands 5-15 cm thick, and occasional subtle, weakly disseminated bands up to 1.5m thick that parallel host rock foliation. Foliation to bedding angles indicated that the east limb is overturned in this area, while further south the limb is steeply east dipping, but upright (Westcott and Pride, 1985). The 1995 drilling added more than 300m of strike length to the mineralized horizons hosted within the Badshot Formation. Significantly thicker mineralized zones encountered in hole C95-11, drilled up-section and toward the hinge area from the thinner mineralized zones encountered in hole C95-10, suggest that the crest area of the Duncan anticline may be more prospective for both thicker and higher grade zinc-lead mineralization.

1997 Drilling

A total of six holes, including one wedge hole, were drilled on the Project by Cominco in 1997. Holes C97-12 C97-13 and C97-5A were drilled from the same collar location as holes C89-5 and C89-6 on Section B. Hole C97-14 was drilled from the same collar location as holes C95-10 and C95-11 (Plate 10-1) on Section C. Holes C97-15 and C97-16 were drilled from the same collar location as hole C91-7 on Section A.

On Section A, hole C97-15 intersected multiple horizons of mineralized Badshot Formation carbonate strata from 384-496m, including a 4.30m interval averaging 5.5% Zn and 2.2% Pb and a 9.5m interval averaging 4.6% Zn and 0.6% Pb. The latter interval occurs 75m down-section from a 4.8 m interval in hole C91-7 that averaged 11.6% Zn and 0.8% Pb, and 50m beneath a 7.5m interval in hole C97-16 that graded 1.6% Zn and 0.5% Pb (Ransom and Pride, 1998).

On Section B, hole C97-12 intersected a 10.7m interval averaging 6.2% Zn and 6.3% Pb, up-dip of and interval in hole C89-5 that graded 7.1% Zn and 4.6% Pb over 8.0m. Hole C97-13 was drilled 110 m up-dip of hole C97-12 and is interpreted to have passed above the crest of the Duncan anticline missing the target zone. Hole C97-5A was drilled 20 m below and 30 m south of the interval in C97-12 and intersected 11.2m averaging 1.84% Zn and 0.6% Pb. Given its close proximity to the much higher grade interval reported for hole C97-12, it suggests that while broad zones of mineralization can be correlated between drill holes, higher grade sulphide bands may be semi-continuous (Ransom and Pride, 1998).

On Section C, because of a steeper than anticipated plunge of the Duncan anticline, hole C97-14 also passed over the crest of the fold, well above the Badshot Formation and mineralized zone intersected in hole C95-11 (3.0m averaging 7.2% Zn and 0.5% Pb).

In 1997, Cominco geologists recommended an additional 17,150m of drilling in 20 holes be completed on what is now the northern target area of the Project owned by Rokmaster, including several wide-spaced step-outs along Jubilee Point to the north of its Section C (Moore, 1997), but no further drilling was completed on the Project.
Drilling Summary
During the period 1989–1997, a total of 12 diamond drill holes with an aggregate length of 8,333.9m were drilled on ground that now comprises part of the Project. The drilling mainly tested the steeply east-dipping (upright) to overturned east limb of the Duncan anticline over a total strike length of 650 m. The work confirmed that altered and mineralized carbonate strata of the Badshot Formation extends from the Duncan Mine property northward for more than 2.3 km and is open to the north and at depth.

The hinge area of the Duncan anticline, where structurally thickened zones of mineralization may occur such as at the Reeves MacDonald deposit (Fyles and Hewlett, 1959), was targeted during the Cominco work on the Project. However, because of drill hole flattening and/or structural misinterpretation the hinge area was not adequately tested and remains an attractive target.

The western limb of the Duncan anticline on the Project has not been the subject of past drilling, but was proven at Mag and Argenta to host important intervals of zinc-lead mineralization.

Plate 10-1: Drill collars with casing for holes C95-9, C95-10, C95-11 and C97-14, Jubilee Peninsula, Duncan Lake Project
Table 10-2: Selected Mineralized Drill Intersections – Duncan Lake Project

<table>
<thead>
<tr>
<th>Hole ID</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Core Length (m)</th>
<th>Estimated True Thickness (m)</th>
<th>Zn (%)</th>
<th>Pb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C89-5</td>
<td>551.00</td>
<td>565.23</td>
<td>14.23</td>
<td>12.2</td>
<td>5.21</td>
<td>3.10</td>
</tr>
<tr>
<td>and</td>
<td>553.00</td>
<td>561.00</td>
<td>8.00</td>
<td>6.9</td>
<td>7.10</td>
<td>4.60</td>
</tr>
<tr>
<td>and</td>
<td>570.50</td>
<td>577.80</td>
<td>7.30</td>
<td>6.3</td>
<td>4.54</td>
<td>1.50</td>
</tr>
<tr>
<td>including</td>
<td>576.00</td>
<td>577.80</td>
<td>1.80</td>
<td>1.5</td>
<td>9.40</td>
<td>0.43</td>
</tr>
<tr>
<td>C89-6</td>
<td>603.48</td>
<td>609.00</td>
<td>5.52</td>
<td>4.7</td>
<td>7.00</td>
<td>1.20</td>
</tr>
<tr>
<td>including</td>
<td>603.48</td>
<td>606.00</td>
<td>2.52</td>
<td>2.2</td>
<td>11.01</td>
<td>1.70</td>
</tr>
<tr>
<td>and</td>
<td>616.00</td>
<td>618.00</td>
<td>2.00</td>
<td>1.7</td>
<td>2.60</td>
<td>0.06</td>
</tr>
<tr>
<td>C91-7</td>
<td>441.90</td>
<td>460.00</td>
<td>18.10</td>
<td>15.8</td>
<td>2.70</td>
<td>0.50</td>
</tr>
<tr>
<td>including</td>
<td>441.90</td>
<td>449.90</td>
<td>8.00</td>
<td>7.0</td>
<td>4.00</td>
<td>1.00</td>
</tr>
<tr>
<td>and</td>
<td>474.60</td>
<td>489.90</td>
<td>15.30</td>
<td>13.4</td>
<td>7.40</td>
<td>0.60</td>
</tr>
<tr>
<td>including</td>
<td>477.20</td>
<td>482.00</td>
<td>4.80</td>
<td>4.2</td>
<td>11.60</td>
<td>0.80</td>
</tr>
<tr>
<td>and</td>
<td>502.40</td>
<td>570.00</td>
<td>65.40</td>
<td>57.2</td>
<td>2.30</td>
<td>0.10</td>
</tr>
<tr>
<td>C97-5A</td>
<td>611.84</td>
<td>627.86</td>
<td>16.02</td>
<td>11.2</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>C95-10</td>
<td>727.20</td>
<td>730.00</td>
<td>2.80</td>
<td>1.4</td>
<td>4.80</td>
<td>1.33</td>
</tr>
<tr>
<td>and</td>
<td>747.20</td>
<td>748.40</td>
<td>0.70</td>
<td>0.4</td>
<td>2.03</td>
<td>0.19</td>
</tr>
<tr>
<td>C95-11</td>
<td>675.30</td>
<td>676.50</td>
<td>1.20</td>
<td>0.6</td>
<td>11.90</td>
<td>1.30</td>
</tr>
<tr>
<td>and</td>
<td>679.90</td>
<td>685.80</td>
<td>5.90</td>
<td>3.0</td>
<td>7.27</td>
<td>0.52</td>
</tr>
<tr>
<td>including</td>
<td>682.90</td>
<td>685.80</td>
<td>2.90</td>
<td>1.5</td>
<td>10.18</td>
<td>1.01</td>
</tr>
<tr>
<td>and</td>
<td>704.60</td>
<td>710.60</td>
<td>6.00</td>
<td>3.1</td>
<td>2.49</td>
<td>0.36</td>
</tr>
<tr>
<td>C97-12</td>
<td>612.50</td>
<td>633.50</td>
<td>21.00</td>
<td>14.7</td>
<td>4.20</td>
<td>4.00</td>
</tr>
<tr>
<td>including</td>
<td>620.00</td>
<td>630.70</td>
<td>10.70</td>
<td>7.5</td>
<td>6.20</td>
<td>6.30</td>
</tr>
<tr>
<td>C97-13</td>
<td>no intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C97-14</td>
<td>no intersections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C97-15</td>
<td>384.40</td>
<td>400.60</td>
<td>16.20</td>
<td>12.8</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>including</td>
<td>384.40</td>
<td>392.00</td>
<td>7.60</td>
<td>6.0</td>
<td>3.0</td>
<td>4.3</td>
</tr>
<tr>
<td>including</td>
<td>393.80</td>
<td>398.10</td>
<td>4.30</td>
<td>3.4</td>
<td>5.5</td>
<td>2.2</td>
</tr>
<tr>
<td>and</td>
<td>404.00</td>
<td>413.50</td>
<td>9.50</td>
<td>7.5</td>
<td>4.6</td>
<td>0.6</td>
</tr>
<tr>
<td>and</td>
<td>438.70</td>
<td>442.90</td>
<td>4.20</td>
<td>3.3</td>
<td>3.4</td>
<td>1.1</td>
</tr>
<tr>
<td>and</td>
<td>473.40</td>
<td>478.00</td>
<td>4.60</td>
<td>3.6</td>
<td>5.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Hole ID</td>
<td>From (m)</td>
<td>To (m)</td>
<td>Core Length (m)</td>
<td>Estimated True Thickness (m)</td>
<td>Zn (%)</td>
<td>Pb (%)</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>485.70</td>
<td>495.70</td>
<td>10.00</td>
<td>7.9</td>
<td>2.3</td>
<td>1.0</td>
</tr>
<tr>
<td>C97-16</td>
<td>383.70</td>
<td>384.40</td>
<td>0.70</td>
<td>0.6</td>
<td>1.7</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>394.90</td>
<td>395.50</td>
<td>0.60</td>
<td>0.5</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>427.50</td>
<td>430.60</td>
<td>3.10</td>
<td>2.6</td>
<td>2.6</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>435.00</td>
<td>437.00</td>
<td>2.00</td>
<td>1.7</td>
<td>4.0</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>565.20</td>
<td>572.70</td>
<td>7.50</td>
<td>6.4</td>
<td>1.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Approx. shoreline at low water level
Figure 10-2: Schematic Cross-section for Cominco's Section B, Duncan Lake
11 SAMPLE PREPARATION, ANALYSES AND SECURITY

Cominco Diamond Drilling Programs

The drill core sampling and analytical procedures used by Cominco during its four phases of exploration drilling on the Project were briefly outlined in several assessment reports. A total of 464 core interval samples were collected during the 1989, 1995 and 1997 drilling programs; an unknown number of core samples were collected from the 1991 drill program. Core was halved by diamond saw or core splitter. Core sample intervals were nominally 1 m in length or less. While details are not provided in assessment reports, the author believes that sample preparation and security were conducted in an appropriate manner, following best industry management practices at the time the work was completed.

2016 and 2017 Character Core Sampling

All core samples collected by the author from core boxes on the Project in 2016 and 2017 were transported by him from the Project and stored securely prior to being sent by bonded courier to a laboratory in Langley, British Columbia.

11.1 SAMPLE PREPARATION AND ANALYSES – 1989-1997 DRILL CORE SAMPLES

Mineralized core was logged, split, sampled and shipped by project staff to the Cominco Exploration and Research Laboratory in Vancouver, British Columbia, for analysis. The author was unable to determine the level of certification that the Cominco lab maintained for the period 1989-1997. Samples from holes C89-5, C89-6 and C91-11 were subjected to zinc, lead and silver via Atomic Absorption Spectroscopy (AAS) analysis. Samples from hole C95-10 were subjected to 31-element ICP analysis with all samples exceeding 10,000 ppm zinc or lead were assayed. All samples from the 1997 program were subjected to zinc, lead and iron via AAS analysis. Other details relating to the analytical methods used by Cominco analytical methods (1989 drill holes) are unknown.

Reported silver grades from the 1989 and 1995 programs (141 core samples) ranged from less than detection (<0.4 ppm Ag) to a maximum value of 6 ppm Ag, but 78% of the results were 1 ppm or less. The author assumes that, as a consequence of its consistently low values, silver was not analyzed for during the 1997 program. Gold was not analyzed for during the 1989-1997 drilling programs.

11.2 SAMPLE PREPARATION AND ANALYSES – 2016 AND 2017 CHARACTER SAMPLES

MS Analytical Laboratories ("MS") in Langley, British Columbia, analyzed the 2016-2017 samples of historic drill core. MS conforms to a quality system that meet or exceeds the requirements outlined in the ISO 9001 and ISO/IEC 17025 standards. MS is unrelated to the issuer.

Sample Preparation

- Each sample received by MS lab staff was dried and individually crushed and pulverized following preparation procedure PRP910 whereby samples are jaw crushed until 70% of the sample material passes through a 2mm screen.
• From this material a 250 g riffle split sample is collected and then pulverized in a mild steel ring-and-puck mill until 85% passes through a 75 µm screen.
• A 0.2 g split of each milled sample is collected for multi-element analysis and ore grade lead and/or zinc analysis, and a 30 g split of each milled sample is collected for gold assay.

Sample Analytical Procedures

The following laboratory procedures were used to analyze the core samples collected in 2016-2017 and associated QA/QC samples.

Multi-element Analyses

• A 0.2 g split of each milled sample was evaluated for 48 elements, including silver, by a four acid digestion using a combination of hydrochloric, nitric, perchloric and hydrofluoric acids using ICP-AES/MS ultra trace level analysis (method IMS-230). Samples returning more than 10000 ppm zinc or more than 10000 ppm lead were reanalyzed using a four-acid ICP-AES ore grade analytical method (methods ICF-6Zn or ICF-6Pb).

Gold Analysis

• A 30 g split of each milled sample was evaluated for gold by lead collection fire assay fusion with an AAS finish (method FAS-111).

11.3 Quality Assurance / Quality Control Procedures

The level of QA/QC program instituted by Cominco during its four phases of drilling on the Duncan Lake Project is not known. Available analytical results sheets do not appear to include data for blanks, standards or duplicate core samples, nor are check samples mentioned in the reports.

One multi-element Certified Reference Standard (CRS) was inserted into the character core sample stream in 2016; none were used in 2017. A statistical analysis of the CRS (CDN-ME-1206) was not performed; results were within an acceptable range (± 2 standard deviations) of the accepted values for zinc and lead.

11.4 Adequacy Of Sample Preparation, Security And Analytical Procedures

The author concludes that security, sample collection, sample preparation and analytical procedures utilized during historical drill programs were completed by professional geologists working for major mining exploration companies and therefore met or exceeded the best management practices and standards of the era in which the work was performed.

Use of a comprehensive QA/QC program is recommended for all future exploration programs to insure that all analytical data can be confirmed to be reliable.
12 DATA VERIFICATION

The geological data presented in this report were predominantly generated by Cominco during the period 1989-1997 and were recorded exploration assessment reports that were submitted to the B.C. Ministry of Energy and Mines for property assessment credits. The reports are readily available via the province’s online ARIS (Assessment Report Indexing System) system. While the author has made no attempt to verify the data, there is no reason to doubt its accuracy or veracity, nor that of the written material, illustrations, maps, sections or diagrams that comprise these reports.

The data in these reports consists of 12 drill holes with an aggregate length of 8333.9 m (note: 1991 data is missing or not available). Data from drill logs and assay sheets have been entered into a database for use in future geological modeling of the mineralization.

An examination of drill core from this period was attempted in 2016, however the observed racked or stacked core is quite disheveled (see Plate 9-1). In 2016, for the purposes of data verification, core from several complete sections of previously sampled mineralization were briefly examined and short sections were sampled in order to characterize the mineralization. It was noted that not all of the visually mineralized sections observed were sampled. A review of the available data (holes drilled in 1989, 1995 and 1997) showed that only 30% of the sampled intervals were analyzed for silver, and none were analyzed for gold. Brief descriptions and results for the intervals sampled are shown in Table 12-1. The observations and sample results serve to verify that zinc-lead mineralization in dolomitic carbonate units consistent with the Badshot Formation was intersected in drilling conducted on the Project from 1989-1997.

Recovery of the remaining historic drill core took place in 2017 and enabled the author to sample select intervals, the data for which is presented in Section 9. Results re-verified the original data presented in reports by Craig (1989), Westcott and Pride (1995), Moore (1997), and Ransom and Pride (1998).

The author deems that the historic drill data for the Project is adequate and provides a sound technical framework upon which future exploration programs can be built.
Table 12-1: Descriptions and Results from 2016 Character Sampling of Duncan Lake Project Drill Core

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Station ID</th>
<th>Easting</th>
<th>Northing</th>
<th>Lab ID</th>
<th>Description</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C89-05-566.9-567.3</td>
<td>WP556</td>
<td>503067</td>
<td>5581109</td>
<td>1435</td>
<td>old drill core (sawn): continuous 40cm interval; pale grey limestone (packstone) with seams of disseminated f-gr py & red-brown sp; total sx 3-5%</td>
<td><0.005</td>
<td>0.29</td>
<td>4.5</td>
<td>720.7</td>
<td>11151</td>
</tr>
<tr>
<td>C91-08-423.7-434.4</td>
<td>WP556</td>
<td>503067</td>
<td>5581109</td>
<td>1436</td>
<td>old drill core (split): composite core sample collected over 10.7 m in single core box - 1 sample every 0.75m; thinly bedded (at 40 TCA) dolomitized limestone with py-sp-gn laminae up to 6mm wide</td>
<td><0.005</td>
<td>0.08</td>
<td>3.2</td>
<td>1817.4</td>
<td>22632</td>
</tr>
<tr>
<td>C97-15-466.3-467.4</td>
<td>WP556</td>
<td>503067</td>
<td>5581109</td>
<td>1437</td>
<td>old drill core (sawn): continuous 1.1m interval; semi-massive to massive f-gr py with 2-3% sp and 1-2% gn in bands parallel to bedding (at 50 TCA); argillite rip-up clasts</td>
<td>0.017</td>
<td>0.63</td>
<td>20.8</td>
<td>15911</td>
<td>20470</td>
</tr>
<tr>
<td>C97-16-575.8-576.8</td>
<td>WP556</td>
<td>503067</td>
<td>5581109</td>
<td>1438</td>
<td>old drill core (sawn): continuous 1.0m interval; argillaceous weakly dolomitized limestone with <1% disseminated py, tr sp</td>
<td><0.005</td>
<td>0.19</td>
<td>4.5</td>
<td>115.8</td>
<td>85</td>
</tr>
</tbody>
</table>
13 **MINERAL PROCESSING AND METALLURGICAL TESTING**

There has been no documented mineral processing or metallurgical testing of mineralized material from the Duncan Lake Project.

14 **MINERAL RESOURCE ESTIMATES**

There have been no mineral resource estimates completed on the Duncan Lake Project.

15 **ADJACENT PROPERTIES**

15.1 **INTRODUCTION**

The only adjacent mineral property of significance is the Duncan Mine property of Teck (Figure 15-1) which consists of twelve (12) contiguous claims that cover surface exposures, underground workings and the historical resource.

15.2 **COMINCO EVALUATION OF DUNCAN MINE PROPERTY**

Mineralization at Duncan Mine consists of disseminated to semi-massive lenticular zones of pyrite, sphalerite, galena, and minor pyrrhotite within limestone, dolomite and siliceous dolomite of the Badshot Formation. Mineralized zones are aligned essentially parallel to that of the enclosing strata, are elongate to the north, and plunge northward at low angles parallel to the axes of Phase II folds. The dolomite, siliceous dolomite, and silica rock that host mineralization are typically pale-grey to off-white with mottled, flecked and banded textures resulting from deformation. Mineralized zones identified during the detailed assessment of the Duncan Mine property can be more than 900 m in length, 150 m in depth and range up to 30 m thick. Average grades were typically <10% combined zinc and lead with zinc grades generally higher than that of lead.

Cominco began exploration on its Glacier option in 1927 and the Duncan Mine claims in 1957. In 1960, following an extensive geological and diamond-drill program, crosscuts and exploratory drift (totaling 1957 m) were driven 35 feet above lake-level in what is now known as the Duncan Mine, located immediately south of Rokmaster's most important current Project target, although no production took place. Its work outlined a zinc-lead resource reported as 4.3 million tons (3.9 million tonnes) grading 3.2% Zn and 3.1% Pb (Moore, 1997) and led to extensive prospecting, mainly by Cominco, to the north (on ground that now comprises part of the Project) and to the south for similar stratabound zinc-lead deposits in the same geological setting as the Duncan Mine.
16 OTHER RELEVANT DATA AND INFORMATION

The author has reviewed the sources of information cited in the Section 19 (References) including drill hole logs, cross-sections and property maps produced by operators on the Duncan Lake Project. Some of the reports reviewed are publicly available government and assessment reports through the B.C. Ministry of Energy and Mines, others are internal reports completed by the property operator. The author is not aware of any additional sources of information that might significantly change the conclusions presented in this Technical Report.

17 INTERPRETATION AND CONCLUSIONS

The Project has not been the subject of any diamond drilling activity since the last drilling was completed by previous owners in 1997. Exploration diamond drilling completed by Cominco from 1989-1997 tested the east limb of the Duncan anticline approximately 1.4 to 2.3 km north of the Duncan Mine adit on ground that now forms part of the Project.

Holes completed on the Project were oriented southwest, were drilled from three sites spaced 300-350m apart along the western shoreline of Jubilee Peninsula, and were drilled to depths of approximately 350m below the level of Duncan Lake. Most of the holes intersected one or more intervals of mineralized, dolomitic and variably silica-altered Badshot limestone.

The results allow for the correlation of broad zones of stratiform and statabound mineralization between holes on section and between sections.

The intersections outline a zone with a strike length of more than 650 m that is open to the north (under Duncan Lake) and to the south toward the Duncan Mine.

Mineralized intervals encountered in 1989-1997 drilling on the Project are generally considered to carry higher average grades than found at Duncan Mine. Some of the mineralized intersections encountered were correlated to the No. 7 and No. 8 zones that occur in the east dipping limb of the Duncan anticline at Duncan Mine.

Mineralization in the limbs of the Duncan anticline is believed to be tectonically thinned; correspondingly, the crest of the anticline may be an area where there has been tectonic thickening of mineralization. An example of tectonic thickening of mineralization in the Kootenay Arc is the Reeves MacDonald mine where the thickest ore zones developed near the apex of the Reeves syncline. On the Project, the crest or hinge area of the Duncan anticline is a viable exploration target.

The Duncan Lake Zinc-Lead Project is a project of merit because:

- It covers a large area of prospective geology, namely altered carbonate rocks of the Badshot Formation that are known regionally in the Kootenay Arc, and locally on Jubilee Peninsula and on the Project, to host important intervals of zinc-lead±silver mineralization.
- On the Project, the Badshot Formation and its enclosing strata are complexly deformed; the north trending Duncan anticline plunges gently northward; basal argillite of the Index Formation comprise the exposed east limb of the fold on Jubilee Peninsula and preserve underlying mineralized Badshot Formation.
Most of the drilling has tested lower portions of fold limbs where mineralization is interpreted to have been tectonically thinned; drilling near the fold hinges may result in the intersection of thicker and higher grade zones of mineralization.

In the Peninsula area north of Duncan Mine, past drilling on the Project intersected multiple intervals of strong zinc-lead mineralization on three successive sections that is suggestive of the presence of a potentially economic deposit and warrants further work.

17.1 Risks and Uncertainties

Risks and uncertainties for the Project are those inherent in mineral exploration and the development of mineral properties, including uncertainties involved in the successful drilling of mineralized zones, the correct interpretation of drill results and other geological data, and the estimation of mineral resources. It cannot be stated unequivocally that future drilling, as recommended below, will intersect mineralization of a similar style and grade to that compiled herein. However, the 1989-1997 data is regarded to be reliable and suggests that mineralization does extend between historic drill sections and remains open to the north and down-plunge. The recommended drilling program may not provide sufficient information to allow for the estimate of a resource for the Project.

Other risks and uncertainties include delays in permitting, unforeseen issues with respect to environmental compliance and changes in regulatory requirements, fluctuating metal prices, the possibility of project cost overruns or unanticipated expenses, and uncertainties relating to the availability of project financing for the near and long term.

18 Recommendations

It is recommended that, prior to any drilling, a preliminary program consisting of further data acquisition and data compilation be completed. This work should include location, recovery, re-organization and selected re-logging of drill core, analysis of selected core intervals for silver and gold and structural study. The estimated cost for the preliminary program is $70,000 (Table 18-1). If new information is uncovered it should be used to amend the recommended Phase 1 drilling program outlined below.

It is recommended that a Phase 1 diamond drilling program take place from two drill stations, including:

- one station spaced approximately 500m north of Cominco’s Section C drill site where a mother hole and daughter wedge hole totaling 800m would target Badshot Formation in the east limb and hinge area of the Duncan anticline,
- a second station located at and wedging off of hole C-89-5 where drilling totaling 1,200m would target hinge areas of the Duncan Anticline above and north of the earlier intercepts.

A proposed budget for Phase 1 Diamond Drilling is $602,000 (Table 18-2). Contingent on the success of Phase 1 drilling, a second phase of drilling should be designed to test mineralization further along trend to the north-northwest. Possible drill collar locations for testing the hinge area of the Duncan anticline are along the west side of Jubilee Peninsula toward Jubilee Point and north of previous drill collar locations. Alternatively drilling could take place from a barge on Duncan Lake, particularly to decrease drilling distance to the hinge area of the Duncan anticline which is projected to be well off-shore from Jubilee Point.
Table 18-1: Proposed Budget for Pre-Drilling Program

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel (Management, Geologists, Geo-Techs)</td>
<td>$40,000</td>
</tr>
<tr>
<td>Accommodation and Meals</td>
<td>$10,000</td>
</tr>
<tr>
<td>Travel</td>
<td>$5,000</td>
</tr>
<tr>
<td>Fuel</td>
<td>$1,000</td>
</tr>
<tr>
<td>Field Supplies, Core Boxes and Rentals</td>
<td>$2,800</td>
</tr>
<tr>
<td>Assaying (~100 @ $42/sample)</td>
<td>$4,200</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$63,000</td>
</tr>
<tr>
<td>Contingency (~10%)</td>
<td>$7,000</td>
</tr>
<tr>
<td>Total</td>
<td>$70,000</td>
</tr>
</tbody>
</table>

Table 18-2: Proposed Budget for Phase 1 Diamond Drilling Program

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond Drilling (2,000m @ $150/m)</td>
<td>$300,000</td>
</tr>
<tr>
<td>Support (Equipment, Crew Changes, Etc)</td>
<td>$30,000</td>
</tr>
<tr>
<td>Personnel (Management, Geologists, Geo-Techs)</td>
<td>$66,000</td>
</tr>
<tr>
<td>Field Supplies and Rentals</td>
<td>$16,000</td>
</tr>
<tr>
<td>Accommodation</td>
<td>$25,000</td>
</tr>
<tr>
<td>Travel</td>
<td>$10,000</td>
</tr>
<tr>
<td>Fuel</td>
<td>$25,000</td>
</tr>
<tr>
<td>Assaying (~600 @ $42/sample)</td>
<td>$25,000</td>
</tr>
<tr>
<td>Claim Acquisitions</td>
<td>$50,000</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$547,000</td>
</tr>
<tr>
<td>Contingency (10%)</td>
<td>$55,000</td>
</tr>
<tr>
<td>Total</td>
<td>$602,000</td>
</tr>
</tbody>
</table>
19 REFERENCES

The Effective date of the technical report is July 20, 2018.

Signed and Sealed at Vernon, British Columbia, the 20th day of July, 2018.

R. A. (Bob) Lane, P.Geo.
CERTIFICATE OF QUALIFIED PERSON

R.A. (Bob) Lane, MSc, PGeo
President, Plateau Minerals Corp.
3000 18th Street, Vernon, BC V1T 4A6
(m): 250.540.1330 (e): blane@plateau-minerals.com

I, R. A. (Bob) Lane do hereby certify that I am the President of Plateau Minerals Corp., a mineral exploration consulting company with an office located at 3000 18th Street, Vernon, British Columbia, and:

1. I am a graduate of the University of British Columbia (1990) with a M.Sc. in Geology. I have practiced my profession continuously since 1990 and have more than 25 years of experience investigating a number of mineral deposit types primarily in British Columbia. I am a Professional Geoscientist (P.Geo.) registered with the Association of Professional Engineers and Geoscientists of British Columbia (Registration #18993) and have been a member in good standing since 1992.

2. I have read the definition of “qualified person” set out in National Instrument 43-101 and certify that by reason of education, experience, independence and affiliation with a professional organization, I meet the requirements to be a “qualified person” as defined in National Instrument 43-101.

5. I have had no prior involvement with the Duncan Lake Zinc-Lead Project and I am independent of Rokmaster Resources Corp., as described in Section 1.5 of National Instrument 43-101, and I hold no direct or indirect interest in the Duncan Lake Project.

6. I am independent of the vendors of the Duncan Lake Zinc-Lead Project.

7. I have read National Instrument 43-101 and Form 43-101F1, and the Report has been prepared in compliance with the instrument and form.

8. As of the date of this Technical Report and to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed and Sealed in Vernon, B.C., this 20th day of July, 2018.

[Signature]

R. A. (Bob) Lane, P.Geo.